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A B S T R A C T   

Flexible and wearable electronics have presented a wide range of advantages to non-invasive real-time human 
health monitoring. However, its remarkable energy consumption during continuous and long-time operation 
brings essential, practical challenges, which lead to growing recognition of exploring new and efficient energy 
strategies for wearables. Here, inspired by human joints as a biomechanical energy source that shows an ideal 
option for sustainable powers, we design a battery-free sweat sensing system integrated with sweat resistant self- 
sustainable energy supply and wireless communication interface, where piezoelectric nanogenerators (PENGs) 
efficiently converting biomechanical energy from freely movable joints (finger, cubital fossa and popliteal space) 
into electricity serving as the self-powering module. Physiological relevant parameters in sweat, including Na+ , 
K+ and pH, are sensed and wirelessly transmitted to the user interface via Bluetooth communication. This system 
shows a paradigm of wearable electronics driven by human joints that demonstrated efficient self-sustainable 
energy supply and multiplexed physiological detection.   

1. Introduction 

Human in extensive exercise generates large amounts of sweat that 
contains a wide variety of secretions, including hormones, metabolites, 
electrolytes, and amino acids. Most of these substances play important 
roles in determining or indicating health conditions [1–4]. For example, 
concentrations of Na+ and K+ in sweat, accompanied by pH change, are 
three important biochemical markers to provide valuable reference to 
medical diagnosis (e.g., cystic fibrosis, dermatosis, diabetes) [5,6]. 
Conventional sweat sensors at early stage adopted rigid substrates that 
often caused discomfortability issue (e.g., oppressing sensation) due to 

the low conformability of devices to skin surface [7,8]. The emerging 
thin, soft, flexible and wearable electronics have revolutionized tradi-
tional medical equipment, as the soft sensor patches replace rigid bulky 
devices to a certain extent, making biochemical markers monitoring in 
sweat more convenient, comfortable and user friendly [9–14]. 

The power sources of sweat sensors typically rely on bulky rigid 
batteries in the integrated circuit for data processing and signal trans-
mission [15]. Flexible batteries have been developed to solve this 
problem to make the whole device easier and more conformal to skin 
surface. Another good strategy is adopting small size battery cells to 
power the circuits [16,17]. Albeit noticeable advantages, these batteries 
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meet limitations of frequent charge and replacement, or even the risk of 
self-explosion. Compared with batteries, renewable energy strategies (e. 
g., solar energy or biomechanical energy) [18–21] provide sustainable 
power management strategies, exhibiting great potential for powering 
novel flexible and wearable electronic devices in the future. 

Among a wide range of applicable renewable energy harvesting ap-
proaches is the biomechanical energy in human body that are generated 
during body movements, such as running, riding, lifting dumbbell and 
even fist clenching [22]. Meanwhile, most exercises are accompanied 
with extensive joint bending and sweating. To harvest and convert 
mechanical energy, the recent advance in triboelectric nanogenerator 
(TENG) [23–28] and piezoelectric nanogenerator (PENG) [29–36] 
shows promising application scenarios to a wide range of fields in con-
verting mechanical energy. Extensive activities from body motions often 
create watery environment (e.g., sweating and biofluid), TENGs therein 
is hindered by water screening effect due to their intrinsic working 
principle, i.e. the coupling of triboelectric and inductive effects [21, 
37–40], which manifests as a remarkable reduction in its electric output 
and energy conversion efficiency. In contrast, PENG based devices are 
competent in such environments because the piezoelectric effect relies 
on electric dipoles migration inside the materials [41,42]. Ever since the 
invention of PENGs, scientists have taken efforts to apply the PENG in 
biomedical engineering. For example, cardiac pacemakers [43], blood 
pressure sensors [44], cardiac sensor [45], pulse sensors [46], deep 
brain stimulation [47]. These achievements fully proved that PENG as 
energy harvester can not only serve as power sources, but also active 
sensors and electric stimulators in biomedical fields. 

Inspired by human joints, we utilized PENG fixed on joints to trigger 
piezoelectric effect and convert biomechanical energy into electricity. 
Combining these strengths, it would be significant to develop sweat 
resistant energy harvesters based on piezoelectric technique to convert 
joint bending into electricity, and at the same time to power electronics 
for the motion generated sweat sensing. Many 2D materials (e.g., PANI/ 
CNT [48], MoO3 [49], MXene [50,51]) can be well used in sensing de-
vices because of their large specific area and high density of reactive 
sites. However, these materials are improper for PENG due to the lack of 
piezoelectric property and device integration. Among piezoelectric 
materials (see Table S1 and Table S2), polyvinylidene fluoride (PVDF) is 
preferred in wearable electronics due to its intrinsic piezoelectric ability, 
film-forming property and good flexibility. 

In this work, we reported integration strategies of a human-joint- 
enabled flexible and wearable self-sustainable sweat sensor patch 
(FWS4P) based on PENG. The FWS4P consists of a piezoelectric nano-
generator as the self-sustainable power source, a low-power integrated 
circuit on flexible printed circuit board (PCB) for power management 
and signal processing, a flexible microfluidic patch for sweat collection, 
and a sweat sensor array for multiplexed biomarker analysis (i.e., [Na+], 
[K+] and pH). The preparation technology of industrial-level flexible 
PCB is comparable to that of traditional rigid PCB, ensuring its high 
reliability and mass production capability. Flexible multilayered PENG 
is ideal to attach onto human joints, to effectively harvest the biome-
chanical energy, and providing electricity for skin-interfaced wearable 
electronics. This design demonstrates an important attempt to construct 
battery-free, piezoelectricity-based flexible and wearable self- 

Fig. 1. Concept graph and structure diagram of FWS4P. (a) Schematic diagram of finger-joint-enabled FWS4P with wireless signal transmission to a user interface. 
PENG converts mechanical energy of finger joints into electricity and power the flexible circuit. Physiological information of sweat was detected by the sensor patch, 
processed by flexible circuit and transmitted to user interface. (b) Diagram of PENG with a layer-by-layer structure. PET, Ag and PVDF serve as supporting substrate, 
electrode layer and piezoelectric layer, respectively. (c) Structure diagram of sweat sensor patch attached to human skin. It consisted of five layers from up to down, 
including PI substrate, Au electrodes, insulation layer, microchannels and adhesive layer. Au electrodes include one reference electrode and three working electrodes. 
Microchannels have eight inlets, four chambers and one outlet. (d) Diagram of integrated flexible and wearable sweat sensor patch. (e) Working mechanism of PENG 
when suffered from joint bending. Picture of twist (f) and bending (g) of the flexible printed circuit board. Picture of bending test of PENG stripe by a linear motor (h- 
i), PENG size is 4 cm × 1.5 cm. (j) Block diagram of the whole system showing power management, signal processing and wireless transmission to user interface. 
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sustainable sweat sensor patch. Further, it establishes a versatile plat-
form for eco-friendly and sustainable wearable electronics. 

2. Results and discussion 

As shown in Fig. 1a, the PENG strips are taped onto the back of 
fingers, covering all five proximal interphalangeal joints, and the FWS4P 
is attached on the back of the forearm. The strips convert the biome-
chanical energy harvested during frequent fist clenching into electricity, 
which is stored in the capacitor on the PCB, then used to power the 
adjacent sweat sensor. The sweat biomarker information ([Na+], [K+], 
pH) is wirelessly transmitted to a user’s smartphone via the Bluetooth 
module in circuit. The PENG has a palindrome 5-layer structure 
(Fig. 1b), with a polyethylene terephthalate (PET) substrate, a silver 
(Ag) back electrode and a polyvinylidene fluoride (PVDF) piezoelectric 
film from the outmost layer inwards. Each PENG strip measures 4 cm ×
1.5 cm × 100 µm and weighs 0.6058 g (Fig. S1). The thin, light and 
flexible features ensure its good attachment on human joints. The sweat 
sensor consists of five layers, including a flexible polyimide (PI) 

substrate layer, a gold (Au) electrode (three working electrodes and one 
reference electrode) layer, an isolation layer (SU-8 photoresist), a 
microchannels layer (SU-8 photoresist) to collect sweat (Fig. S2), and an 
adhesive layer (medical tape) to attach the sensor to skin surface like a 
patch (Fig. 1c and Fig. S3). The ends of Au electrodes are connected to 
the flexible circuit through a narrow bridge as a demountable design 
(Fig. 1d). The circuit shows excellent flexibility when the device is 
twisted or bent (Fig. 1 f and g). Various electronic units are integrated in 
the circuit to achieve signal collection, processing and transmission, 
including power management, voltage regulator, instrument amplifiers, 
MCUs, ADC ports and Bluetooth modules as illustrated by Fig. 1j. The 
power management unit controls electric flux into the FWS4P, i.e. it 
close the circuit and releases the electricity when voltage of its built-in 
capacitor reached the threshold value. The working principle of PENG 
was stated as follows: In the original state where the PENG strips are laid 
flat, the electric dipoles in the PVDF are align vertically between the top 
and the bottom electrodes (Fig. 1e); When PVDF strips undergo 
frequently bending (Fig. 1 h and i), the polarization charge density in the 
PVDF increases and generates an electric field, which compels electrons 

Fig. 2. Electrical characterization of a single PENG stripe. (a) Voltage variation and (b) Current variation of a single PENG under different frequencies from 0.5 Hz to 
3 Hz. The voltage is around 65 V; The current increases with frequency increases. (c) Relationship of output voltage and current versus external loading resistance. 
(d) Relationship of power density versus loading resistance. The maximum power density reached to 140 mW/m2. (e) Variation of output voltage at different bending 
angles from 30◦ to 180◦. 
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to flow from the top electrode to the bottom electrode (Fig. 1e, press); 
When the external force disappears and the strips gradually recovers 
from deformation, electrons flow back in opposite direction (Fig. 1e, 
release).[52] Periodic bending and recovery of PVDF bring periodic 
current through the external circuit. 

To characterize the electrical performance of a single PENG strip, we 
tested its open-circuit voltage (Voc), short-circuit current (Isc) and 
transferred charge at different frequencies of its bending cycle from 
0.5 Hz to 3 Hz. The bending angle was fixed at 60◦. The Voc remained 
stable around 65 V (Fig. 2a) despite the change in frequency. The Isc 
increased from 1 μA to 5 μA as frequency increases because a high fre-
quency usually means a high flow rate of electron, which generates a 
higher output current (Fig. 2b). Meanwhile, the amount of transferred 
electrons was also measured stably around 100 nC for each bending 
circle (Fig. S4). A peak power density of a single PENG strip was 
observed at 140 mW/m2 as Voc and Isc were recorded with a series of 
loading resistance from 100 Ω to 108 Ω (Fig. 2c and d). Additionally, the 
Voc increased from 40 V to 90 V as the bending angle increased from 30◦

to 180◦ (Fig. 2e), which could be mainly attributed to the increased 
polarization charge density at a larger bending angle. The electric per-
formance test of single PENG demonstrated outstanding ability for 
harvesting mechanical energy, it also provides strategy for electrical 
connection (in series or parallel) of multiple energy harvesters. 

When the PENG strips are attached to fingers, they may be connected 
in series or in parallel. Compared with in series connection, in parallel 
connection should be able to provide a much higher current than in 
series connection, leading to a faster charging rate of the capacitor. Next, 
we connected fifteen PENG strips in parallel with three on each fingers. 
At a bending frequency of 3 Hz, the output voltage was about 93 V 
(Fig. 3a), and the output current reached to 48 μA (Fig. 3b). 

With the same number of PENG strips connected in series, an output 
voltage of about 550 V and a current of 3.5 μA (Fig. S5) conclude that in 
parallel connection is indeed a more suitable strategy in that it allows for 
faster charging of the capacitor (Fig. S6). Considering that triboelec-
tricity is usually remarkably reduced by water screening effect in damp 
environments, we tested the electric performance of PENG energy 
harvester in simulated sweat. PENG strips demonstrated stable electric 
output at 95 V (Fig. 3c), ensuring their unhindered application in pair 
with the FWS4P. Five types of capacitors were charged with fifteen 
PENG strips connected in parallel after rectifying the converted elec-
tricity to evaluate PENG’s charging performance. It took a few seconds 
for the single 100 μF capacitor to be charged to 3.7 V, which is higher 
than the threshold voltage (3.2 V) required to turn on the circuit. 
Charging time for the other larger capacitors (470 μF, 1000 μF, 5 * 470 
μF in parallel and 5 * 1000 μF in parallel) were 3.5 min, 6.2 min, 
20.7 min and 35 min, respectively (Fig. 3d). Among them, the capacitor 

Fig. 3. Parallel connection performance and 
bending performance of fifteen PENG stripes. 
(a) Output voltage and (b) output current of 
fifteen PENGs in parallel connection in air. (c) 
Output voltage of fifteen PENGs in parallel 
connection with water on its surface. (d) 
Charging curves of different capacitors with 
fifteen PENGs in parallel connection. (e) 
Cycling performance of a single PENG stripe for 
30,000 bending test. The measurement was 
carried out using a linear motor. All the 
bending angle in this part is 180◦.   
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of 5 * 1000 μF capacitors in parallel was used to power the sweat sensor 
system in the following experiments. To test fatigue resistance of the 
nanogenerators to bending, we conducted a 30, 000 cycle bending test 
on one PENG strip. The output voltage remained stable around 97 V; no 
significant decay was observed throughout the bending test. 

The design and performance of the sweat sensor patch are illustrated 
in Fig. 4. The naked Au electrodes in the sweat sensor were further 
processed to carry out their composition analysis duty. To detect specific 
ions, selective membranes were mounted onto the electrodes with a 
PEDOT:NaPSS layer in between. Meanwhile, it can minimize the 

potential drift serving as an ion-electron transducer. Fig. S7 illustrates 
the layered structure and working mechanism of the ion-selective sen-
sors. The measurement of ion concentration was facilitated via a Na+

ionophore X containing membrane on the Na+ ion-selective electrode 
(ISE) and a valinomycin-containing membrane on the K+ ISE. A selec-
tivity test was carried out to ensure that each sensor was able to spe-
cifically detect corresponding ions (Fig. S8). The response curve of the 
Na+ ISE showed outstanding specificity to Na+, and no obvious changes 
while Ca2+ and K+ were added as interference. Similar results were 
observed for the K+ ISE, where Ca2+ and Na+ were added as 

Fig. 4. Sensing property of sweat sensor patch in room temperature. (a-c) Open-circuit potential response of a Na+ sensor in NaCl solution with concentrations from 
10 mM to 160 mM (a), a K+ sensor in KCl solution with concentrations from 1 mM to 20 mM (b), and a pH sensor in Mcllvaine’s buffers with pH values from 3 to 8 
(c). (d-f) Consistency valuation between different sensors of Na+ (d), K+ (e) and pH (f). The sensitivity variation is lower than 5%. (g-i) Repeatability valuation 
between different sensors of Na+ (g), K+ (h) and pH (i). The sensitivity variation is lower than 5%. (j-l) Stability valuation of Na+ sensor (j), K+ sensor (k) and pH 
sensor (l) for 30 days. 
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interference. For pH analysis, the pH ISE was modified by mounting a 
HAuCl4 layer and a polyaniline (PANI) layer, respectively, on the Au 
electrode to achieve H+ sensitivity. 

To maintain steady potential responses of the sensors, polyvinyl 
butyral (PVB) was adopted and coated on Ag/AgCl reference electrode. 

These ISEs show ideal performance across the entire spectrum of phys-
iologically relevant conditions, i.e. Na+ concentrations of 10–200 mM, 
K+ concentrations of 1–20 mM and pH levels of 3–8. Representative 
voltage responses of Na+ and K+ and pH ISEs show near-Nernstian 
sensitivities of 65.72, 52.83 and 55.44 mV per decade concentration, 

Fig. 5. Application demonstration of FWS4P attached on different human joints, e.g., finger joint, arm joint and leg joint. (a) Hand-enabled energy harvesting, and 
powering sweat sensor by gripping a hand-muscle developer. PENG converted mechanical energy of clenching fist into electricity. (b) Output current by clenching fist 
with a hand-muscle developer. (c) Cubital-fossa-enabled energy harvesting, and powering sweat sensor by dumbbell curling. PENG converted mechanical energy of 
bending arm into electricity. (d) Output current by training arm muscle with a dumbbell, PENGs are attached to cubital fossa. (e) Popliteal-space-enabled energy 
harvesting, and powering sweat sensor by riding a bike. PENG converted mechanical energy of leg bending into electricity. (f) Output current by training leg muscle 
with biking, PENGs are attached to popliteal space. (g) Variation of circuit current during sweat sensor operation. (h) Wireless monitering of Na+, K+ and pH, 
powered by biking for 150 min, five data points were collected during the exercise. (i) Photograph of hand-enabled sensing of pH, Na+ and K+, after clenching fist for 
30 min, the circuit was turned on. (j) Module diagram of practically operating the self-sustainable sweat sensor. 
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respectively, at room temperature (Fig. 4a, b and c). Multiple sensors of 
each ion type were fabricated and three of each were picked to 
demonstrate sensor consistency. For each ion type, the triplicate sensors 
show nearly identical absolute potentials with a low variation (< 5%) in 
sensitivity (Fig. 4d, e and f). Repeatability of the sensors is demonstrated 
in Fig. 4g, h and i, each sensor has been tested for three times, and the 
results show low variation (< 5%) in sensitivity. The sensor stability was 
tested over one month, in conditions that more closely mimic human 
sweat during exercises. Measurement results with fluctuation less than 
5% of each sensor indicate good stability for long-term use (Fig. 4j, k and 
l). 

A microfluidic channel is mounted onto the sweat sensor patch 
before the final adhesive layer for controlled and automatic on-body 
sweat sampling (Fig. S2). For sweat sensors on skin, inlets are 
designed to collect sweat into chamber by capillary force of microfluidic 
channel [53,54], one to four inlets for each chamber are reported in 
literature based on their requirements [55–57]. In general, more inlets 
usually mean a faster sweat collection rate to fill the chamber. Consid-
ering that sweat is not evenly distributed on skin, more than one inlet is 
preferred to achieve a faster sweat collection. On the other hand, take 
into account the limited area of the sensor patch and overall esthetic 
appearance, two inlets for each chamber (eight inlets in total) is adopted 
in our work. The sweat collected gets analyzed by the ISEs in the reac-
tion chamber. The waste solution after analysis exits from the outlet. The 
flexibility of the microfluidic sensor patch allows it to adhere con-
formally to human skin, indicating its applicability for a variety of sports 
scenarios. When adhere the sweat sensor patch onto skin or peel it off 
from skin, it is inevitable to cause bending and deformation to the sensor 
patch. To prove the stability of sensor patch can resist the bending and 
deformation, we tested its performance with 200 cycles of bending, 
which showed good stability before and after deformation (see Fig. S9). 
Besides, the long-term stability when detect ions was also tested for 6 h 
(see Fig. S10), which proved the sweat sensor is capable of detecting 
sweat in long-term sports scenes. 

Next, the FWS4P was put to test in daily exercise scenarios. Besides 
finger joints, the PENG strips can be fixed onto any joints (e.g., elbows, 
knees) to harvest the biomechanical energy generated through joint 
bending, and power the sweat sensor patch. Fig. 5 demonstrates the 
application of the FWS4P with fifteen PENG strips in grip practicing, 
dumbbell curling and cycling. The fifteen PENG strips were connected in 
parallel and divided into five groups, and each group of the triplicates 
were taped together layer by layer with double-sided tape. In the grip 
practice scenario, the PENG triplets were fixed on the middle finger 
joints (proximal interphalangeal joints) and the sweat sensor patch on 
the back of the forearm just below the wrist (Fig. 5a). The hand-muscle 
developer was squeezed twice per second, and the output current 
averaged 45.6 μA (Fig. 5b). In the dumbbell curling scenario, the PENG 
triplets were fixed side by side in the elbow pit (cubital fossa) crossing 
the elbow crease, and the sweat sensor patch was fixed on the ventral 
side of the wrist (Fig. 5c). A dumbbell of 2.5 Kg was lifted in standard 
dumbbell bicep curls at 1 Hz, resulting in an average output current of 
45 μA (Fig. 5d). In the cycling scenario, the PENG triplets were fixed in 
the knee pit (popliteal fossa) crossing the knee crease, and the sweat 
sensor patch was fixed nearby on the back of the thigh (Fig. 5e). Pedaling 
speed was maintained at 1 cycle per second, which resulted in an 
average output current of 41.3 μA (Fig. 5f). Output voltage and trans-
ferred charge were measured in the arm and leg application scenarios; 
see Fig. S11 for details. As shown in Fig. 5g and j, after charging 
capacitor (5 *1000 μF) to 3.7 V, the sweat sensor system was turned on. 
After signal processing, the information is transmitted by Bluetooth 
module to a smart phone (Fig. 5i and j; see video). 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106786. 

Five data points are collected during an experimenter keep riding for 
150 min. The multipoint data collection is also a common used method 
for a long time sweat monitoring, which can reflect physiological 

information during a long-time exercise from energetic to tired (or 
dehydration) [58–63]. Besides, we also continuously monitored the ions 
in sweat with a battery for one-hour exercise, the data was collected 
every five minutes (see Fig. S12), which showed similar trend with 
PENG powered multipoint data collection with a long-term sampling 
interval in Fig. 5h. Three indicators (Na+, K+ and pH) are all in the 
normal physiological range (Fig. 5h). In general, based on different in-
dividuals and stimulation methods to collect sweat, the concentrations 
of Na+, K+ and pH in human sweat are 10–100 mM, 3–10 mM and 
4.5–7, respectively [64–66]. These data could change slightly with the 
exercise intensity, measurement position, humid and diet. For example, 
some literature reported the concentration range of Na+, K+ and pH are 
20.3–112.3 mM, 4.2–13.8 mM and 4–6.8, respectively [67,68]. In our 
on-body test, Na+ concentration increased with exercise time, which can 
be attributed to the low fluid loss rate under the cover of sweat sensor 
patch. The low sweat secretion rate reduces dilution and increases 
accumulation of Na+ in the collected sweat [69]. The overall trend of K+

concentration slightly decrease and fluctuate around 7 mM, this varia-
tion is in agreement with that reported in literature [70,71], it can be 
attributed to the variation of exercise intensity of subject and sweat 
transfer rate in microchannel. The pH variation was related to the ex-
ercise intensity, the concentration of ammonia in sweat decrease when 
exercise because it changes into ammonium (NH4

+). The exercise in-
tensity of subject decreases with time because of physical strength loss, 
leading to the reduce of accumulated NH4

+ concentration in sweat, and 
further resulting in the pH decrease [67]. These three physiological in-
dicators are all within normal range during the exercise. On the other 
hand, in practical application, to make the data has statistical signifi-
cance, more volunteers should be recruited and tested. Meanwhile, it is 
also necessary to set standard for a large sample size. Fig. 5j shows the 
working module during energy collection and management, circuit 
operation, signal process and transmission. PVDF served as the energy 
generation module. After rectification, the electricity was stored in 
capacitor with 5 * 1000 μF capacity. When its voltage reached to a 
threshold value, the electricity will be released to power the Bluetooth 
module and instrument amplifier, then transmit the processed signal to 
user interface. 

3. Conclusion 

In summary, this work presents a flexible and wearable 
piezoelectricity-based self-sustainable sweat sensor system that is 
completely powered by human joint movements. The power source 
PENG could be easily fixed on large or small joints (e.g., finger joint, 
elbow joint and knee joint), and shows ideal mechanical and electric 
stability while converting the biomechanical energy harvested from 
joint bending into electricity. The conformal property of the FWS4P al-
lows it to stay fixed on skin surface, effectively and automatically col-
lecting sweat, while utilizing the piezoelectricity enabled by PENG and 
the joints in proximity to power its sweat composition analysis. 

The Na+, K+ and pH ISEs in the sweat sensor patch show consistent, 
repeatable and stable performance across the spectrum of physiologi-
cally relevant conditions, and the resulted health information is trans-
mitted to a user interface via the Bluetooth module built in the flexible 
integrated circuit. On the other hand, because PENG generates pulse 
electricity with joint bending, which has to be managed and stored first 
and then power the circuit and sweat sensor patch. Therefore, it takes 
some time before collecting data. To further improve the applicability, 
reduce exercise intensity, realize data collection within several minutes 
and even achieve continuous monitoring of sweat, we discussed the 
future development directions of PENG: 

3.1. Improve electric output and energy conversion efficiency 

Whether the PENGs serve as power source or active sensor in a self- 
sustainable system, energy density is a key parameter in determining 

H. Li et al.                                                                                                                                                                                                                                        



Nano Energy 92 (2022) 106786

8

continuous and stable operation of the entire system. So, researchers 
should continually improve the output of PENGs. Developing new ma-
terials, designing innovative structures and integrating low-energy cir-
cuits will be an essential step to realize more practical applicability in 
wireless sensor networks. For example, increasing specific surface area 
with micro/nano morphology, doping with chemical elements and 
surface modification, these treatment help to achieve a higher power 
density and enhance the sensitivity of PENG as active sensors. Addi-
tionally, it is also suggested to prepare composite materials by mixing 
inorganic piezoelectric materials with organic polymer, which com-
bined the high piezoelectric coefficient of inorganic materials and the 
good flexibility of organic polymers. This method is conducive to syn-
thesizing flexible piezoelectric materials and utilizing both piezoelectric 
effects of inorganic materials and organic polymers to attain high 
output. 

3.2. Integrate electronic elements into an all-in-one system 

The ultimate aim of PENGs focuses on the practical application, 
therefore, massive efforts should be paid on integrated sensors with 
multiple functions and artificial intelligence by combining machine 
learning and remote control. Besides, integrating other electronic ele-
ments in self-powered system and achieving self-sustainable operation 
of the whole wireless sensor nodes will finally facilitate the PENG 
application as active sensors or power source in wireless sensor 
networks. 

3.3. Durability 

To convert mechanical energy into electricity, it is inevitable to 
generate repeated deformation in practical applications, which will in-
fluence the structures of material and device, and ultimately destroy the 
PENG, reduce its output performance and shorten the service life. A 
feasible solution is to package the PENG with robust polymer and 
enhance its stability and durability. The materials commonly used for 
package are PET (polyethylene terephthalate), PDMS (poly-
dimethylsiloxane), PI (polyimide) and so on. 

Finally, with more system level investigations, wherein PENGs are 
integrated with energy storage elements, control circuits, power con-
ditioning circuits and sensors, this technology will be capable of serving 
as a promising self-sustainable and eco-friendly power source for future 
wearable electronics to wirelessly monitor individual healthcare in daily 
exercise. 

4. Materials and methods 

4.1. Materials 

3,4-Ethylenedioxythiophene (EDOT), sodium polystyrene sulfonate 
(PSS), sodium ionophore X, valinomycin, bis(2-ethylehexyl) sebacate 
(DOS), Polyvinyl Butyral (PVB), polyvinyl chloride (PVC), sodium tet-
rakis [3,5-bis(trifluoromethyl)phenyl] borate (Na-TFPB), sodium tetra-
phenylboron (NaTPB), aniline, calcium chloride dihydrate 
(CaCl2.2 H2O), block polymer PEO-PPO-PEO (F127), multiwall carbon 
nanotubes (MWCNTs), iron(III) chloride (FeCl3), and citric acid were 
purchased from Macklin. Sodium chloride (NaCl), Potassium chloride 
(KCl), methanol, ethanol, acetone, tetrahydrofuran (THF), cyclohexa-
none, hydrochloric acid (HCl), tetrachloroauric acid (HAuCl4), and 
disodium phosphate (Na2HPO4) were purchased from Aladdin. Ag/AgCl 
ink was purchased from Structure Probe Inc. (SPI) supplies. PI film 
(175 µm thick) was purchased from Sigma. PVDF was purchased from 
ZHIMK Technology (Shen Zhen) CO., Ltd. and used without further 
treatment. NMD-3 2.38% developer, PM-THINNER developer and SP-01 
stripping buffer were purchased from Suzhou Research Semiconductor 
(Resemi) Co., Ltd. 

4.2. Preparation of sensor patch with microfluidic structure 

The detailed preparation technology is shown in Fig. S3. The sensor 
patch was first patterned on PI film using positive photoresist (AZ1500) 
and UV light, followed by sputtering Cr (thickness, 30 nm) and Au 
(thickness, 100 nm). The residual photoresist was lift-off in SP-01 
stripping buffer. After that, a 2 µm insulation layer was fabricated by 
spin-coating negative photoresist (SU-8 2025) onto the sensor quad, and 
then patterned by photolithography and developed in developing liquid 
(PM-THINNER) to expose the electrodes. Finally, a 100 µm micro-
channel layer was fabricated by spin-coating negative photoresist (SU-8 
2025); the channels were patterned by photolithography and developed 
in developing liquid (PM-THINNER). 

4.3. Preparation of biosensors 

The three sensors (Na+ sensor, K+ sensor and pH sensor) were on the 
one sweat sensor patch to detect each ions. The left and right are Na+

sensor and pH sensor, respectively. The up and down are K+ sensor and 
reference electrode, respectively. Working electrodes (Na+ and K+) have 
two layers, including PEDOT layer and ion selective membrane. To 
prepare PEDOT layer, Au electrodes were immersed in the mixed solu-
tion of 0.01 M EDOT and 0.1 M NaPSS. Then PEDOT layer was deposited 
on Au layer under the current of 200 µA for 100 s. PEDOT layer as ion- 
electron transducer can minimize the potential drift of ISEs and improve 
the electrode performance (see Fig. S13). To prepare Na+ selective 
membrane, THF (660 µl) was used as solvent to dissolve Na-TFPB 
(0.55%, w/w), Na+ ionophore X (1%, w/w), DOS (65.45%, w/w) and 
PVC (33%, w/w). Then 15 µl of solution was drop cast onto the PEDOT/ 
Au electrode. To prepare K+ selective membrane, cyclohexanone 
(350 µl) was used as solvent to dissolve the mixture (100 mg) of vali-
nomycin (1%, w/w), NaTPB (0.55%, w/w), PVC (33%, w/w) and DOS 
(65.5%, w/w). Then 15 µl of solution was drop cast onto the PEDOT/Au 
electrodes. To prepare pH working electrode, Au electrode was 
immersed in the mixture solution of HAuCl4 (50 mM) and HCl (50 mM), 
and electrochemically deposited at 0 V for 30 s. Then, immerse the Au 
electrode in the mixture of aniline (0.1 M) and HCl (0.1 M) and deposit 
for 50 cycles. Scan rate and range were 50 mV/s and − 0.2 to 1 V, 
respectively. To prepare the reference electrode, we first printed Ag/ 
AgCl ink onto the Au electrode. Then prepared the reference solution, 
which consisted of PVB (79.1 mg), NaCl (50 mg), F127 (1 mg) and 
MWCNT (0.2 mg) in methanol (1 ml). Finally, drop cast 20 µl of refer-
ence solution onto the Ag/AgCl electrode above. The solutions above 
were stored at 4 ºC when not in use. 

4.4. Characterization of biosensor performance 

To make the sensors maintain the best performance, a maintenance 
solution containing 0.1 M Na+ and 0.1 M K+ was prepared to store the 
sensors. To test relevant performance, the sensors were immersed in 
NaCl solution from 10 mM to 200 mM, KCl solutions from 1 mM to 
20 mM and Mcllvaine’s buffers with pH values from 3–8, respectively. 
To verify the selectivity, solutions containing Na+ (50 mM), K+

(50 mM), and Ca2+ (50 mM) were added in turn into the reaction sys-
tem. To verify the long-term stability, the sensors were tested for many 
times during one month. 

4.5. Electric characterization of PENG 

The short-circuit current and transferred charge were recorded using 
an electrometer (Keithley 6517B) and an oscilloscope (Teledyne LeCroy 
HDO6104).[72–75] The open-circuit voltage and charging curves were 
measured using an oscilloscope (Teledyne LeCroy HDO6104). The 
electric variation of voltage, current and transferred charges versus 
frequency were measured using a linear motor. 

H. Li et al.                                                                                                                                                                                                                                        



Nano Energy 92 (2022) 106786

9

4.6. On-body sweat detection experiment 

The on-body sweat detection experiment was performed by the 
author Tianrui Chang, and this experiment was approved by the insti-
tutional review board of China-Japan Friendship Hospital (2021–112- 
K70). The author was also informed and signed consent form before 
taking part in the experiment. 

4.7. Preparation of PENG 

The PENG has a layer by layer structure, including PET encapsula-
tion layer as the supporting substrate, silver ink layer as the electrode of 
PVDF, and PVDF piezoelectric layer. Before encapsulate the PVDF with 
PET, PVDF was firstly coated with silver ink to cover its surface, after 
dried in air, the PVDF film was poled at 100 ℃ and applied a direct 
electric field of 100 kV/cm for 20 h [76]. Then cut the poled PVDF film 
into proper shape and size, and encapsulate it with PET film using 
hot-press. Finally, connect electrodes to the reserved silver ink using 
conductive fixture (see Fig. S14). The key step is the high voltage po-
larization of PVDF, if without the treatment, PVDF has few ability to 
convert mechanical energy into electricity. Meanwhile, PET encapsu-
lation can protect the PENG from damage during repeated bending. 
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