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Abstract: Hypertensive patients account for about 16% to 37% of the global population, and about
9.4 million people die each year from hypertension and its complications. Blood pressure is an
important indicator for diagnosing hypertension. Currently, blood pressure measurement methods
are mainly based on mercury sphygmomanometers in hospitals or electronic sphygmomanometers at
home. However, people’s blood pressure changes with time, and using only the blood pressure value
at the current moment to judge hypertension may cause misdiagnosis. Continuous blood pressure
measurement can monitor sudden increases in blood pressure, and can also provide physicians with
long-term continuous blood pressure changes as a diagnostic reference. In this article, we design
an artificial intelligence-enhanced blood pressure monitoring wristband. The wristband’s sensors
are based on piezoelectric nanogenerators, with a high signal-to-noise ratio of 29.7 dB. Through the
transformer deep learning model, the wristband can predict blood pressure readings, and the loss
value is lower than 4 mmHg. By wearing this blood pressure monitoring wristband, we realized
three days of continuous blood pressure monitoring of the subjects. The blood pressure monitoring
wristband is lightweight, has profound significance for the prevention and treatment of hypertension,
and has wide application prospects in medical, military, aerospace and other fields.

Keywords: biosensors; self-powered; piezoelectric nanogenerator; deep learning; artificial intelligence

1. Introduction

Hypertension refers to a disease with persistently high arterial blood pressure, which
often occurs in middle-aged and elderly people, alcoholics and obese people [1]. It is
estimated that hypertensive patients in the world account for about 16% to 37% of the
global population [2]. Every year, about 9.4 million deaths worldwide are related to high
blood pressure, accounting for about 18% of all deaths [3]. Blood pressure measurement
is an important method for the initial diagnosis of hypertension. Existing blood pressure
measurement methods are divided into two types: invasive and non-invasive. Only criti-
cally ill patients and complicated situations require invasive measurement, which involves
sending a catheter from a peripheral artery to the aorta through percutaneous puncture
and connecting the catheter’s end to a monitoring and pressure measurement device [4].
The traditional non-invasive blood pressure measurement method is the cuff compres-
sion method. Medical centers often use mercury sphygmomanometers, and household
sphygmomanometers are generally electronic sphygmomanometers [5].

With the popularity of wearable electronics, concepts such as mobile medical and
intelligent medical have also been proposed [6–8]. Consumers are more inclined to obtain
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their own health information anytime, anywhere, rather than being limited to medical facil-
ities [9–11]. Therefore, this also means higher functional requirements for wearable devices.
For hypertensive patients, if real-time blood pressure measurement can be achieved, on the
one hand, the occurrence of sudden hypertension complications can be monitored, and the
physician can be notified in time for rescue; on the other hand, long-term continuous blood
pressure information can be provided for the physician [12].

The cuff pressure method cannot abandon equipment such as pressure pumps and
airbags, which is contrary to the miniaturization and high integration of wearable electronic.
Therefore, if real-time measurement of blood pressure is to be achieved, new testing and
processing methods need to be sought [13]. The pulse wave signal is easy to collect,
the signal is strong and it contains a lot of cardiovascular health information of people.
Currently, the pulse wave signal has received extensive attention, and various analysis
algorithms for pulse wave have sprung up. On the other hand, the vigorous development
of artificial intelligence has provided more ideas for digital signal processing of wearable
medical devices [14]. Using deep learning of artificial intelligence to analyze massive data
can reduce manual intervention, mine data information, and improve the accuracy [15,16].

Another problem with wearable devices is power consumption [17]. Existing sen-
sors used in wearable devices generally require additional excitation voltage to work,
which increases the complexity of the system. On the other hand, it also increases power
consumption [11,18]. Active sensors, such as mechanics sensors based on triboelectric nano-
generators and piezoelectric nanogenerators (PENG), require no external power supply
and have low power consumption [19–21]. At the same time, these two sensors also have
the advantages of low cost and a wide selection of materials, and flexible materials with
good biocompatibility can be selected [22–24]. The above advantages make active sensors
based on nanogenerators have wider application prospects in biomedical monitoring.

2. Materials and Methods

Molds for the blood pressure prediction wristband (BPPW) were designed and printed
using a three-dimensional printer (Raize 3D) and polylactic acid (PLA) printing sup-
plies. For wireless data acquisition and transmission, a commercial Bluetooth board was
used. A linear motor (LinMot E1100, Suzhou, China) was utilized to continuously impart
periodic mechanical traction to the BPPW to maintain the operating cycle. A Keithley
6517 electrometer (Beijing, China) was used to measure the open-circuit voltage, short-
circuit current and short-circuit charge of the BPPW, and the data were obtained and
recorded using an oscilloscope (LeCroy HDO6104, New York, NY, USA). A wireless motion
monitoring system based on a BMD101 board was used to record data from the BPPW.
A commercial physiological recording analyzer system (PRAS), BIOPAC: MP150, was used
for a pulse acquisition test. Additionally, the blood pressure value is obtained by an
electronic blood pressure monitor: yuwell YE655A (Shanghai, China).

3. Results

An artificial intelligence-enhanced blood pressure predict wristband (BPPW) was
developed in this article, which integrates a sensor based on PENGs. Using this sensor, the
wristband can obtain the wearer’s pulse wave signal, and then through compared with
the established artificial intelligence model, this wristband can realize the prediction of the
wearer’s blood pressure. The wristband consists of five parts, including a rubber strap, a
PLA shell, a lithium-ion battery, a Bluetooth module and a PENG based sensor (Figure 1A
reveals the structure and materials of the BPPW, respectively). Figure 1B shows the wearer
wearing a BPPW. Figure 1C shows the BPPW alone. The overall length of the BPPW is
26 cm, the strap part is 2 cm wide and 2 mm thick, and the PLA shell is 4.8 cm long, 2.8 cm
wide and 2 cm high.
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Figure 1. The overview of BPPW. (A) The structure of BPPW and the materials used in each part.
(B) The photograph of subjects wearing BPPW. (C) The photograph of BPPW; the whole length of
BPPW is 26 cm. (D) The design concept of BPPW.

Through the BPPW, we can implement continuous blood pressure monitoring for the
wearer. The whole monitoring system consists of three parts, including the device side,
the processing side and the application side (Figure 1D). The device side is the main part
of the wristband. The main work of this part is to collect pulse information on the spot
and transmit the signal to the processing side through the Bluetooth module. Once the
processing side receives these data, after a series of data processing, the collected data will
be compared with the previously trained deep learning model, and the prediction result of
blood pressure is obtained. It is conceivable that after the completion of the industrialization
of the BPPW, for the long-term blood pressure data of the wearer, the system can upload
the long-term blood pressure of the wearer to the cloud, or notify the sudden high blood
pressure or low blood pressure to physician. In the current study, due to the limitations
of experimental conditions, we adopt the method of off-site calculation, upload the data
to the processing end and then perform the calculation. After commercialization in the
future, we can consider the local calculation method and directly merge the device side
and processing side.

The sensor part of BPPW is based on PENG, which is divided into four layers from
top to bottom, which are the package layer (upper layer), the generation layer, the structure
layer and the package layer (lower layer). The material used in the package layer is polyte-
trafluoroethylene (PTFE), the material used in the power generation layer is polyvinylidene
fluoride (PVDF) film, and the structural layer is 3D printed PLA with microstructures
(Figure 2A). The microstructure on the structural layer is helpful for the output enhance-
ment of the generator. A contraction and relaxation of the heart constitutes a cycle of
mechanical activity called the cardiac cycle. The cardiac cycle generates pulses that travel
along the arteries, transporting blood throughout the body (Figure 2B). We set the sensor on
the wrist, and the pulse signal can be collected through the radial artery [25]. The motion
of one cardiac cycle acts on the sensor, corresponding to one power generation cycle of
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the generator. As shown in Figure 2C, one power generation cycle of the generator can
be divided into four steps. The first is the initial state, where the sensor is in equilibrium
and no current is produced. Next, the sensor is subjected to the action of external force,
the PVDF is bent, the induced charge is generated on both sides of the film, and the ex-
ternal circuit has current passing through. Then, the external force reaches the peak, the
bending degree of PVDF reaches the maximum, and the induced charge on both sides also
reaches the maximum. When the external force is removed, the PVDF recovers from the
bending state, the induced charge on both sides of the film decreases, and the external
circuit has a reverse current flow. Finally, it returns to the initial state and enters the next
cycle. Figure 2D shows the situation when the BPPW we designed and a commercial pulse
sensor monitor the same subject at the same time. The output results of the BPPW and
the commercial pulse sensor are relatively close, indicating that our sensor can reflect the
real situation of the pulse signal. Figure 2E–G, respectively, show the open-circuit voltage,
short-circuit current and charge transfer of the sensor generated by blood pressure directly.
The peak voltage output of the BPPW is 0.41 V, the peak current output is 0.21 µA and the
single charge transfer amount is about 45 nC.

Figure 2. The working principle of BPPW. (A) The structure and materials used of sensor in BPPW.
(B) The pulse wave travels from the heart to the wrist. (C) The generation principle of the PENG
based sensor used in BPPW. (D) Comparison between BPPW and PRAS, the upper is the BPPW
signal and the bottom is the PRAS signal. The open-circuit voltage (E), short-circuit current (F) and
the charge (G) output of the BPPW.
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In order to obtain a sensor with higher output performance and higher signal-to-noise
ratio facing the blood pressure measurement, we explored the microstructure of the sensor.
We set up four kinds of sensors, the structure layer structure of these four sensors is different,
as shown in Figure 3A. The printing material selected is hot-melt PLA, the temperature of
the 3D printer’s nozzle is set to 215 degrees Celsius, and the temperature of the baseplate
is set to 60 degrees Celsius. We drew the model of the structural layer in advance, sliced
the model and uploaded it to the 3D printer for printing. The printing time was about
42 min. After waiting for the model to cool, peel the sensor from the baseplate. The model
is then treated with surface polishing liquid, placed in a fume hood and after the polishing
liquid is air-dried, the processed structural layer model is obtained. These four types are no
microstructure type, cylindrical type, prismatic type and no structure layer type. Among
the four structures, the cylindrical and prismatic types with microstructures have the higher
output, and the cylindrical type has a significant performance improvement compared to
the prismatic type. Sensors without structured layers also have an output, but the output
is not as high. Furthermore, the sensor without microstructure has no output because
the generation layer is limited by the structure layer. Next, we explored the height of the
microstructure. Experiments show that with the increase in the height of the microstructure,
the output of the sensor increases, but when the height of the microstructure exceeds
2 mm, the output decreases instead (Figure 3B). Finally, we explore the cylinder size and
spacing, and Figure 3C shows that the sensor output decreases with increasing cylinder
size and spacing. Based on the above experiments, we finally choose a cylindrical structure
layer, the height is set to 2 mm and the spacing is set to 1 mm. Under this condition, the
signal-to-noise ratio of the sensor is 29.7 dB. After the sensor generates current, it needs to
be processed by some noise reduction circuits. Figure 3D shows the circuit diagram of the
BPPW. The circuit of the whole BPPW consists of three parts, the sensor part, the Bluetooth
module part and the computer part. After the TENG converts the mechanical signal into
an electrical signal, a noise reduction circuit consisting of a capacitor and a resistor needs
to be connected to its positive electrode. After the signal is transmitted to the Bluetooth
module, the data is transmitted to the computer in real time through wireless transmission
for processing and analysis. The Bluetooth module selected is the BMD101.

The difference of sensor output mainly comes from the different deformations of
PVDF film. Under the condition of consistent force, the deformation of the sensor comes
from the pressure exerted by the structural layer on the power generation layer. The
greater the pressure, the greater the deformation of the PVDF film. Therefore, the cylinder
microstructure with the smallest contact area exerts the greatest pressure, deforms the
PVDF film the most and generates the greatest voltage output. For the sensor without a
structure layer and the sensor without a microstructure, since the contact area between the
structure layer and the power generation layer of the sensor without a microstructure is
very large, the force exerted by the wrist skin on the sensor can hardly affect the power
generation layer of the sensor. So, there is almost no output. The sensor without the
structural layer can receive part of the force from the wrist, so it has a weak output. The
potential generation result from four microstructure of finite element analysis are also
consistent with the results we discussed (Figure 3E–H).

As a sensor that needs to work for a long time, its durability is particularly impor-
tant. We have performed robustness tests on the sensor by a linear motor more than
10,000 times cycles. As shown in Figure 4A, the sensor is relatively stable before and after
the entire fatigue test. Its voltage output is basically stable at about 2.5 V, and the waveform
does not change much. Blood pressure fluctuates throughout the day. Generally speaking,
the waveform of blood pressure of a human in a day is in the shape of a “spoon”, which
is highest in the morning, decreases in the afternoon, and reaches the lowest value after
dinner. We performed a continuous blood pressure tracking test on a subject. The left side
of Figure 4B shows the subject’s pulse signal gathered by our sensor, and the right side
shows the subject’s blood pressure value collected by the electronic sphygmomanometer.
Through the pulse data on the left, we found that when the blood pressure of the subjects
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was relatively high, the peak value of the pulse output signal had little effect, but the small
peaks between the main peaks oscillated more violently. Blood travels from the heart to the
extremities, and the timing of the pulse waves to each part of the body varies slightly. We
set up two sensors and placed them upstream and downstream of the radial artery, with a
difference of 5 mm in their center positions (Figure 4C). It can be observed that the signal
peak of the sensor at the proximal end always appears before the sensor at the distal end,
and the time phase difference between the two signals is about 0.047 s.

Figure 3. The influence of microstructure differences of structural layers on sensor output.
(A) The influence of the four structures type on the output, these four structure types including
no microstructure type, cylindrical type, prismatic type and no structure layer type. (B) The influence
of the microstructure length on the output. (C) The influence of microstructure spacing on the output.
(D) The circuit diagram of the BPPW. (E–H) The finite element analysis of potential generation for
four microstructures.
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Figure 4. The output performance of the BPPW. (A) Robustness test results of BPPW. (B) BPPW
monitors the subjects’ blood pressure and the readings of the sphygmomanometer at different times
of the day. (C) The difference in time between two sensors at different locations.

We performed 120 pulse signal acquisitions and recorded the subjects’ blood pres-
sure measurements at each acquisition. We intercepted 10 s of data in each sample, and
finally combined these 120 sets of data with the corresponding blood pressure labels
to build a deep learning regression model. After the original data is subjected to one-
dimensional convolution processing (convolution kernel size is 3, stride size is 1, noise
reduction processing), it is divided into several batches and placed in the model of the
self-supervision–incentive mechanism, then the model is continuously updated with recon-
structed parameters, obtains a linear parameter layer and finally performs regression with
the blood pressure value through this linear layer (Figure 5A). Since there is no obvious
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relationship between high and low blood pressure, we did not regress to two blood pressure
values once, but established two models to regress to systolic and diastolic blood pressure
values, respectively. Figure 5B shows the sample distribution of our database, a total
of 120 samples, including 82 males and 38 females. In terms of body mass index (BMI),
26 were underweight (BMI < 20), 62 were normal weight (20 < BMI < 25) and 32 were
overweight (BMI > 25). According to the blood pressure measurement values, 26 patients
had lower diastolic blood pressure values (value < 65), 78 patients had normal diastolic
blood pressure values (65 < value < 85) and 16 patients had higher diastolic blood pressure
values (value > 65). There were 26 patients with lower systolic blood pressure value (SBPV)
(value < 95), 26 patients with normal systolic blood pressure value (95 < value < 135) and
26 patients with higher systolic blood pressure value (value > 135). Figure 5C shows that
the loss value of the model decreases with the number of iterations. It can be seen that
the diastolic blood pressure value tends to converge after 48 cycles, the loss value after
convergence is about 4 mmHg and the systolic blood pressure value after 56 iterations then
tends to converge; the loss value after convergence is about 6 mmHg. Finally, we tested a
subject at risk of hypertension with BPPW for three consecutive days (Figure 5D). Based on
the collected pulse signals, our model gave a predicted value of blood pressure, where at
12:00 and 16:00 on the first day and at 20:00 on the third day, the subjects’ diastolic blood
pressure values all exceeded the normal blood pressure range. This is also consistent with
the actual situation.

Figure 5. The application of BPPW. (A) The process of BPPW’s deep learning model establishment.
(B) The sample distribution of the training model. (C) The loss value decreases with the increase
in training epochs. (D) A potential hypertensive patient wears a BPPW for three consecutive days,
and BPPW predicts his blood pressure. According to BPPW’s prediction, at 12:00 and 16:00 on the
first day and at 20:00 on the third day, the subjects’ diastolic blood pressure values all exceeded the
normal blood pressure range.
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4. Discussion

Hypertension refers to a chronic disease in which blood pressure remains at high levels.
If not treated properly, people with high blood pressure are at risk of stroke, coronary heart
disease, heart failure, chronic kidney disease and even premature death [2]. At present,
the diagnosis of hypertension in hospitals is usually determined by a blood pressure
measurement. Considering that people’s blood pressure is variable and some people have
white coat hypertension, this diagnosis method has the possibility of misdiagnosis. BPPW
is designed to monitor blood pressure continuously and for a long time. By optimizing and
redesigning the structure and size of BPPW, we realize the miniaturization and integration
of BPPW, which are two important requirements of wearable electronics [26–29]. The size
of BPPW’s shell is within 4.8 cm long, 2.8 cm wide and 2 cm high, which further improves
the wearability of BPPW. Another focus of our research is to improve the accuracy of BPPW
in blood pressure prediction [11]. The original data collected by BPPW is the pulse wave.
The pulse wave can directly reflect the heart rate, but the relationship between pulse wave
and blood pressure is not reflected directly. We use a transformer deep learning model
to mine the relationship between pulse wave and blood pressure, and reduce the error
to 4 mmHg. We tried a variety of deep learning models and found the most suitable
algorithm. Perhaps, with the further development of artificial intelligence, this prediction
result will be further improved [30]. In some applications combining self-powered sensors
with artificial intelligence [31–33], researchers use traditional machine learning methods
to achieve model establishment. The machine learning algorithms used include linear
regression, local weighted regression, ridge regression, lasso regression, classification and
regression tree, and so on. In our early experiments, we also tried to use these traditional
machine learning algorithms. Traditional machine learning methods need to rely on
effective feature engineering. Perhaps the important features of blood pressure reflected by
the pulse wave are really not easily extracted. We extracted a variety of features to build
a regression model, and the results were not satisfactory, with an average error of more
than 11 mmHg. Finally, we chose deep learning. Deep learning does not require manual
extraction of features [34], but is performed by computers, and the final experimental
results obtained by BPPW are ideal. By analogy, when we solve other biosensors problems,
if the feature engineering of the original data cannot well reflect the target results, we can
choose appropriate deep learning algorithms to help us perform data mining and reduce
manual intervention errors caused.

5. Conclusions

In this paper, based on the PENG, a mechanical sensor with excellent performance
is designed, and its signal-to-noise ratio can reach 29.7 dB. By exploring the influence of
different microstructures on the output, it is found that the microstructure of the columnar
array can effectively improve the output performance of the sensor. The BPPW is based on
a supervised and self-attention deep learning model, which can predict blood pressure by
combining the collected pulse wave data with a pre-established regression model. In this
work, we compare multiple artificial intelligence algorithms, and finally choose Transformer,
whose prediction error is less than 4 mmHg. The BPPW is ingeniously designed, easy to
wear and can monitor blood pressure for a long time. It has great application value for the
treatment and prevention of hypertension in patients.
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