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Abstract 

According to data released by the World Health Organization, more than one 

billion people in the world are experiencing from disabilities, so that their lives face 

all kinds of inconveniences. As a practical tool to help people with disabilities 

participate in social life, assistive devices for the people with disabilities play an 

important role in their daily lives. As an effective electromechanical signal conversion 

technology, triboelectric nanogenerator (TENG) has been successfully applied to 

various types of biosensors. This review aims to provide an overview of the 

development of assistive devices for the people with disabilities based on TENG with 

five categories: hearing, vision, pronunciation, gustation and limb/joint, according to 

the classification method of the impaired part. Meanwhile, a human-computer 

interaction system for the people with disabilities is also investigated. Finally, the 

prospect and potential challenges of this new field are discussed. 
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1. Introduction 

According to data released by the World Health Organization, more than one 

billion people in the world are experiencing from disabilities, including hearing, 

visual, pronunciation, physical, etc. People with disabilities can face multiple 

inconveniences, barriers, and dangers as a result of their health conditions. [1, 2]. This 

corresponds to about 15% of the world's population. As a practical tool to help the 

people with disabilities participate in social life, assistive devices for the people with 

disabilities play an important role in their daily life [3]. 

At present, most electronic assistive devices for the people with disabilities require 

battery power. However, due to the limitations of the battery industry, the battery itself 

often occupies most of the space and weight of such equipment, which is not conducive 

to the miniaturization and portability of the appliance, and even increases the burden 

on the people with disabilities to a certain extent, and will cause the environment 

problems, etc. [4, 5]. Therefore, it is of vital importance to realize the self-powered 

electronic assistive devices for the people with disabilities and to add convenience to 

the daily life and rehabilitation monitoring for them. 

In 2012, Wang et al. proposed the TENG as a self-powered technology for various 

sensors and energy harvesting devices [6]. For example, TENG has been successfully 

applied in the health and medical field as implantable medical sensors [7-13], 

biosensors [14-22], health monitoring sensors [23-31] and so on [32-37]. In addition, 

TENG based energy harvesting devices have successfully harvested abundant 

biomechanical energy in the human body, such as heartbeat [9, 38, 39], breath [40], 

body motion [41-46] and so on [47-56]. This kind of device has the advantages of 

lightweight, high flexibility, stretchability, simple manufacture and low cost. It can 

directly contact the surface of human skin or organs for energy harvesting and health 

monitoring, and has been applied to the field of assistive devices for the people with 

disabilities. 

This review aims to overview the development of TENG-based assistive devices 

for the people with disabilities, covering the most typical categories as is shown in 

figure 1. In order to clarify the correspondence between the assistive devices for the 

people with disabilities and the classification of the damaged part, the review tends to 

classify the assistive devices into five categories: hearing impairment, vision 

impairment, pronunciation impairment, gustation impairment and limb/joint 

Page 2 of 33AUTHOR SUBMITTED MANUSCRIPT - JPMATER-100528.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



impairment. In addition, a human-computer interaction system for the people with 

disabilities has been also investigated. This article first introduces the theory and 

working mode of TENG, and then introduces TENG-based assistive devices for the 

people with disabilities according to the above categories, and finally, the prospective 

to the future and the potential challenges in this area are described. 

 

 

Figure 1. An overview illustration of assistive devices for the people with disabilities 

enabled by triboelectric nanogenerators (TENGs). Reproduced with permission [111], 

Copyright (2019) by Elsevier. Reproduced with permission [90], Copyright (2015) by 

John Wiley and Sons. Reproduced with permission [104], Copyright (2020) by John 

Wiley and Sons. Reproduced with permission [95], Copyright (2019) by Royal 

Society of Chemistry. Reproduced with permission [83], Copyright (2018) by John 
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Wiley and Sons. Reproduced with permission [105], Copyright (2018) by John Wiley 

and Sons. 

 

2. Triboelectric nanogenerator 

2.1 Theory of TENG 

The triboelectric effect is a kind of electrification effect caused by contact [57]. 

When the two objects with different abilities to gain or lose electrons come into contact 

with each other, the electrons are transferred from one object to the other, causing the 

two objects to carry equal amounts of different charges. The surface of a material that 

has a strong ability to gain electrons will attract negative charges. On the contrary, a 

surface of a material that has a strong ability to lose electrons will attract positive 

charges. The essence of triboelectric effect is the transfer of electric charge. The positive 

or negative charge of a material depends on the ability of two contacting materials to 

obtain electrons. 

    The triboelectric effect widely exists in people's daily life. For a long time in the 

past, the triboelectric effect was regarded as a negative effect. For example, static 

electricity caused by triboelectricity will bring huge losses to industrial production, 

electronic equipment, and human life. Until recent years, Professor Zhong Lin Wang 

proposed the triboelectric nanogenerator. Its principle is based on the coupling of 

triboelectric effect and electrostatic induction effect, which can directly convert 

mechanical energy into electrical energy and turn negative effect into positive effect. It 

is widely used in the fields of energy harvesting and self-powered sensing. 

The basic principle of TENG can be traced back to Maxwell's equation. Maxwell's 

equation is one of the most important equations in the field of physics. Maxwell 

introduced displacement current in Ampere's law to satisfy the continuity equation of 

charge. Professor Zhong Lin Wang extended the expression of the displacement current 

(Wang term), the term 
𝜕𝑃𝑠

𝜕𝑡
 was introduced in Maxwell’s displacement current for 

describing the theory of nanogenerators, where 𝑃𝑠  is the polarization density 

introduced by surface electrostatic charges owing to contact-electrification or 

piezoelectric effect [58]: 

𝜀∇ ∙ 𝐸 =  𝜌 −  ∇  ∙  𝑃𝑠                       (1) 

∇  ∙ 𝐵 = 0                           (2) 

∇  × 𝐸 =  −
𝜕𝐵

𝜕𝑡
                         (3) 
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∇  × 𝐻 = 𝐽′ +  𝜀
𝜕𝐸

𝜕𝑡
+ 

𝜕𝑃𝑠

𝜕𝑡
                    (4) 

𝐽𝐷 =  
𝜕𝐷

𝜕𝑡
=  𝜀

𝜕𝐸

𝜕𝑡
+  

𝜕𝑃𝑠

𝜕𝑡
                    (5) 

 

Note that E is the electric field, 𝐵  is magnetic induction, 𝐻  is magnetic field 

intensity 𝜌  is the distribution of free charges in space,  𝐽  is the density of free 

conduction current density in space as a result of charge flow, 𝑡  it time, 𝐷  is the 

electric displacement vector, based on which Maxwell proves the equivalence of 

electricity and magnetism. As the theoretical origin of the TENG, Maxwell's 

displacement current (Eq.5) is caused by the time variation of the electric field plus a 

media polarization term. The addition of the 𝑃𝑠  term to the electric displacement 

vector opens the application of Maxwell's equation in the field of energy and sensing. 

With the establishment of general theories and continuous improvement of materials 

and structures, TENG will reach new heights in the field of energy and sensing. 

2.2 Working mode of TENG 

In order to make more effective use of various mechanical energy in different 

environments, so that the TENG under different motion state can convert mechanical 

energy into electrical energy, the researchers established four working modes of the 

TENG: vertical contact-separation mode, lateral sliding mode, single-electrode mode 

and freestanding triboelectric-layer mode. These four basic working modes are the basis 

of all structures of TENG, and many different structures can be derived according to 

specific applications [15]. 

Vertical contact-separation mode 

As shown in figure 2(a), two different materials are used as two friction layers, and 

conductive materials are deposited on the surfaces of these two friction layers as 

electrodes. Under the action of external force, the two friction layers contact with each 

other, the surface of the material will generate an equal amount of heterogeneous 

charges. When the external force is released, the two friction layers begin to separate, 

at this time, an electric potential difference is generated at the interface, free electrons 

flow from an electrode to another driven by the electrostatic field. When the two friction 

layers are in close contact again, this potential difference will disappear. When applying 

and releasing mechanical force to this working mode TENG, periodic voltage output 

will be obtained [59-61]. 

Lateral sliding mode 
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As shown in figure 2(b), similar to the vertical contact-separation mode, two 

different materials are used as two friction layers, and conductive materials are 

deposited on the surfaces of these two friction layers as electrodes. When the two 

friction layers are in complete contact, the charges are in equilibrium and there is no 

potential difference at the interface. When an external force is applied to the two friction 

layers in the horizontal direction of the relative displacement, the electrons on two 

electrodes are driven to flow by the triboelectric charges. A periodic voltage output can 

be generated by sliding the two friction layers periodically when they are completely in 

contact and completely separated. Compared with the previous working mode, the 

voltage output of this mode is more impressive due to more effective contact [62, 63]. 

This working mode can also be extended to other structures, such as disc rotation and 

so on. 

Single-electrode mode 

As shown in figure 2(c), the single-electrode mode TENG consists of a movable 

friction layer and an electrode. When the friction layer and the electrode layer are in 

close contact, the surface of two kind of materials will induce the same amount of 

different kinds of charges. When the friction layer leaves the electrode layer, the field 

distribution of local electric will change. In order to adapt to potential changes, 

electrons will flow between the electrode and the ground. Periodic contact and 

separation of friction layer and electrode layer can generate periodic voltage output [64, 

65]. This working mode can also be extended to a single-electrode-sliding mode. 

Freestanding triboelectric-layer mode 

As shown in figure 2(d), Two unconnected symmetrical electrodes are respectively 

plated under the dielectric layer (charged body), and the width of the electrodes is 

consistent with the width of the moving object. The reciprocating movement of this 

charged body between the two electrodes will cause an asymmetric charge distribution 

on the surface of the material. Electrons will flow from one electrode to the other, in an 

effort to balance the change of electric potential difference [66, 67]. Due to this structure, 

there is no direct mechanical contact between the dielectric layer and the symmetrical 

electrode, which can greatly reduce the wear of materials and prolong the service life 

of TENG. 
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Figure 2. Four fundamental working modes of TENG. (a) Vertical contact-separation 

mode. (b) Lateral-sliding mode. (c) Single-electrode mode. (d) Freestanding 

triboelectric-layer mod. 

 

3. Assistive devices for the people with disabilities based on TENG 

3.1 TENG-based devices for the hearing impaired 

There are many people experiencing from hearing impediments. Sensorineural 

hearing loss is one of the most typical hearing disorders caused by the damage of hair 

cells of the Corti in the cochlea (figure 3(a)) [68]. Cochlear implant is a device that 

converts sound into coded electrical signals [69]. In recent years, with the development 

of electronic technology and materials science, many researchers have been studying 

various kinds of cochlear implants [70-72], such as piezoelectric based sensors [73-76]. 

Such devices can convert sound waves into specific electrical signals, which have a 

wider frequency response and frequency selectivity. However, the output signal of 

piezoelectric sensors is lower and the production cost is higher. Therefore, a sensor that 

is simple to manufacture, low in cost, and has high sensitivity and high signal-to-noise 

ratio is needed to solve these problems. 

Liu et al. reported a novel bionic cochlear auditory sensor enabled by triboelectric 

nanogenerator, which can transform acoustic signal to electrical signal directly, and 

realized the function of frequency selectivity [68]. As shown in figure 3(b), the sensor 

imitates the basement membrane of the cochlea and consists mainly of a trapezoidal 
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polytetrafluoroethylene (PTFE) film and nine small rectangular silver electrodes. The 

external sound signal makes the PTFE film resonate, contacting and separating from 

the electrode layer to generate a voltage signal. Different position on the trapezoidal 

structure has its own specific response frequency range from 20 to 3000 Hz.  

Guo et al. recently reported a self-powered triboelectric auditory sensor (TAS) for 

an external hearing aid in bionic robot also in assistive devices for the people 

experience from the hearing impediments [77]. The core structure of the TAS consists 

of a fluorinated ethylene-propylene (FEP) film with Au electrode, a 100μm thick spacer, 

and a film with Au electrode. FEP membrane has a porous structure to make the sound 

wave across, the outside of the TAS is an acrylic board for fixing. When a certain 

frequency of sound wave passes through, the Kapton film and the FEP film in the device 

will contact and separate at a certain frequency, thereby generating electrical signals. 

The reported TAS has achieved an ultrahigh sensitivity of 110 mV dB-1 and a widest 

ever frequency response from 100 to 5000 Hz. In most cases, the hearing impaired is 

deaf to only one or several specific frequency areas. The advantage of TENG based 

sensors is that they can be designed to meet a variety of requirements using a variety of 

structures and do not require complex signal conversion circuits, thus minimizing the 

overall system cost. Through the structural design, the device can work in the 

corresponding resonant frequency region, and the signal spectrum can be converted and 

analyzed to repair the sound information. This work demonstrated the potential of TAS 

as a cochlear implant or a hearing aid. 
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Figure 3. TENG-based devices for the hearing impaired. (a) Conceptual schematics of 

the cochlear and the basilar membrane. (b) Structural design of the bionic cochlear 

auditory sensor for frequency selectivity [68], Copyright (2018) by Springer Nature. 

 

3.2 TENG-based devices for the vision impaired 

Studies have revealed that more than 80% of external information reaches the brain 

through vision, however there are about 39 million blind people worldwide [78]. 

Because of impaired vision, the blind cannot get information efficiently like the normal. 

They rely on tactile sense, hearing and residual vision to obtain information around the 

environment. The sense of touch, which is a comprehensive function of pressure, soma 

esthesia in the hands and skin, is the most important way for visually impaired people 

to perceive the world and obtain information from outside [79]. For text messages, the 
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blind usually gets them by touching Braille contacts with finger, however Braille books 

are immutable and thick. Currently, some researchers have studied Braille display 

devices, most of them are based on electromagnetic, piezoelectric or electrical 

stimulation [80-82]. However, these devices have complex structures or require high-

voltage power supply drive, which is potentially dangerous. Therefore, a safe, efficient, 

simple and low-cost braille display device is needed.  

Recently, Qu et al. demonstrated a refreshable Braille display system based on 

dielectric elastomer and TENG [83]. Dielectric elastomer is used as an actuator, and 

TENG is used as an actuating source. Through the IPC etching treatment on the Kapton 

surface of the friction layer of TENG, its output performance is effectively improved, 

so that it is enough to actuate the dielectric elastomer membrane. As is shown in figure 

4 (a), the Braille display system consists of three parts: TENG, control module and 

Braille display module. Researchers used dielectric elastomer membrane to fabricate 

the Braille dots for their display. They are raised and lowered through the combined 

effect of high voltage and air pressure inside the display module. By integrating an 

electronic switch into display system, researchers turned a single six-dot Braille module 

from a static device into a dynamic device. Dielectric elastomer is a good combination 

with TENG, compared to commercial high-voltage power supply, TENG has the 

advantage of good safety. By touching the contacts of the Braille display system, the 

blind can obtain Braille information. This provides the possibility for the realization of 

portable, safe and low-cost Braille e-books (figure 4 (c)).  
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Figure 4. TENG-based devices for the vision impaired. (a) Design of the Refreshable 

Braille Display System. The system consists of the TENG, Braille display module, and 

the control module. (b) Braille letters of “T,” “E,” “N” and “G” displayed by 

Refreshable Braille Display System. (c) Refreshable, cost-effective, and safe Braille e-

book for the blind [83], Copyright (2018) by John Wiley and Sons. 

 

3.3 TENG-based devices for the speech impaired 

Language is the main method of our daily communication. However, for many 
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people with speech impairment, they cannot communicate effectively with others like 

the normal. As a result, they may even have social fear and low self-esteem, stand the 

pain of the body at the same time to the torture of soul. Speech impairment is a 

functional disorder of the vocal organs, which is caused by the shortening of the tongue 

muscle belt, cleft lip and palate, and throat muscle incoordination. In order to alleviate 

the pain of speech disorders, the development of speech rehabilitation assistive devices 

is of great significance. The auxiliary vocalization methods include esophageal/tracheal 

vocalization, electronic larynx, auto-pneumatic artificial larynx, etc. [84-86]. However, 

they have certain defects. For example, the esophageal/tracheal sound generator needs 

to be inserted into the esophagus/trachea, which is easy to cause infection; the precision 

of the electronic larynx is low and requires the patient to hold it. In addition, so far, 

most wearable pressure sensors are based on the principle of capacitance [87], 

piezoelectricity [88, 89] and resistivity [85] changes. Although each has its advantages, 

the structure is generally complicated and requires an external power supply. Therefore, 

for the speech impaired, their ideal speaker is a wearable, hands-free and self-powered. 

Yang et al. proposed a self-powered bionic membrane sensor (BMS) for voice 

recognition [90]. As is shown in figure 5 (a), polyethylene terephthalate (PET) film is 

used as the supporting substrate, a layer of indium tin oxide (ITO) coated nylon film is 

covered on the PET substrate. Nylon and ITO are used as friction layer and electrode 

layer respectively, and PTFE film with nanostructure is used as another friction layer. 

A PTFE membrane is tented outwards at the level of the tip of an umbo, and PET is 

used as the material of umbo. The height of the umbo will determine the pressure 

detection limit and detection range of the sensor. The tapered structure between PTFE 

and nylon forms a cavity, and two circular holes with a diameter of 0.5 mm penetrate 

through the three layers of PET, ITO and nylon to make the tapered cavity merge with 

the surrounding air. BMS has fast response time (less than 6ms), wide dynamic range 

(0.1 Hz to 3.2 kHz) and higher sensitivity (51mV Pa-1). As shown in figure. 5(b), BMS 

is attached to the throat of the experimenter as a self-powered laryngeal microphone. 

When the experimenter sounds with the throat, BMS presents the sound information in 

the form of voltage, as shown in figure. 5(c). Fourier transform is applied to the signal 

to present the sound information of 45-1500 Hz. It can be used in the field of speech 

recognition, as well as in the field of wearable medical care, providing convenience for 

people with speech impairments without throat damage.  
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Sensors in direct contact with human skin should show good flexibility and 

stretchability, and have the ability of high signal quality, while rigid sensors cannot fit 

human skin well. It is an important task to improve strain sensor so that it has all the 

characteristics mentioned above. In order to better fit the contour of the throat, Hwang 

et al. proposed a highly stretchable, sensitive and transparent sensor based on the 

multifunctional silver nanowires (AgNWs)/poly(3,4-ethylenedioxythiophene): 

polystyrenesulfonate (PEDOT:PSS)/polyurethane (PU) nanocomposite, and integrate 

TENG and supercapacitor as energy supply and storage for amplifier (figure 5(d)) [91]. 

Attach the device to the throat as an autonomous invisible conformal sensor to monitor 

the motion of a person's throat, such as breathing, coughing, drinking, swallowing and 

eating. It has been used universally. This has important implications for people with 

language impairments, as the sensors can alert themselves and those around them in an 

emergency. In addition, it can also be used in other fields, including electronic skin, soft 

robot, human-computer interaction and so on. 
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Figure 5. TENG-based devices for the speech impaired. (a) Structural design of the 

bionic membrane sensor (BMS). (b) A picture showing the BMS attached to the 

participant’s neck acting as a self-powered throat microphone. (c) The real-time voltage 

output in response to the throat vibration during speaking, and corresponding Fourier 

transform of the acquired output voltage, the frequency components spanning from 45 

to 1500 Hz [90], Copyright (2015) by John Wiley and Sons. supercapacitor (d) 

Schematic descriptions of the TENG, supercapacitor (SC), and strain sensor. (e) 

Monitoring of throat motion. (f, g) Resistance change of the strain sensor, measured by 

SC charged by TENG, during breathing and coughing [91], Copyright (2015) by 

American Chemical Society. 

 

3.4 TENG-based devices for the gustation impaired 

Feeling plays a vital role in the interaction between human beings and the external 
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environment [92]. Taste buds are special receptors on the tongue, that can detect and 

transmit gustatory information to the brain. Artificial taste electronic skin can recognize 

drinks, transmit biochemical sensing signals to the brain and participate in taste 

perception, which may be helpful for the gustation impaired. Recently, surface acoustic 

wave sensors and cell substrate impedance sensor have realized the substitution of taste 

[93]. However, these devices usually require large external power supply, which 

increases the production cost and limits the promotion of integrated flexible artificial 

taste system [94]. 

To this end, Zeng et al. proposed a self-powered biosensing enabled by 

triboelectrification and biochemistry, for the detection of pH value and alcohol 

concentration [95]. The biosensing can overcome the technical gap in power supply, 

beverage chemical state detection, signal transmission and other aspects of neural 

bionics, the outputting current signal carries the sensory information obtained from 

taste buds and transmits it to the brain, as shown in figure 6(a). The sensor is composed 

of three parts: polydimethylsiloxane (PDMS) layer, Cu electrode and polypyrrole (Ppy) 

film, PDMS film is used as substrate and triboelectric material; photolithography 

patterned copper network is utilized as electrode and supporter to maintain Ppy; Ppy 

polymer film is used as triboelectric and sensing material, as illustrated in figure 6(b). 

Figure 6(c) shows that the sensor has good flexibility and transparency. The surface 

chains of Ppy will change in different pH and alcohol concentrations, resulting in 

different electron affinity for the Ppy surface. So that the output will be affected by the 

chemical state of the interface between Ppy and PDMS. Under acidic conditions, H+ 

ions make the Ppy change to oxidation state and increase the electron affinity, which 

results in much lower output of the sensor. Under alkaline condition, OH- ions make 

the Ppy change to the reduction state and decrease the electron affinity, causing the 

output of the sensor higher. Ethanol in the enzymatic reaction can be decomposed into 

ethanol and H+ ions, therefore, with the concentration of ethanol in the solution 

increased, the output of the sensor decreased. The self-powered biosensing can detect 

common beverages, such as Chinese tea, apple vinegar, Chinese liquor and beer which 

diluted by adding different proportions of water, as shown in figure 6(d). Figure 6(e) 

proves that the sensor can taste various beverages without external power supply. This 

study provides a novel approach for developing artificial gustation sensor with low cost. 
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Figure 6. TENG-based devices for the gustation impaired. (a) An artificial gustation 

system (e-skin) for gustatory perception substitution without an external electricity 

source. (b) Basic structure of the e-skin. (c) Optical pictures of the e-skin. (d) The bio-

chemical sensing performance of biosensing e-skin against four kinds of beverages. (e) 

The relationship between response and pH value (alcoholicity) of apple vinegar, 

Chinese tea, Chinese liquor and beer [95], Copyright (2019) by Royal Society of 

Chemistry. 

 

3.5 TENG-based devices for the joint (limb) impaired 

With the rapid development of modern society, human health may be affected by 

the fast-paced life, and their joint (limbs) may also be injured by some accidents. For 

the joint (limb) impaired, rehabilitation accessory instrument and motion detection 
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equipment are essential [92, 96-98]. However, these appliances are currently bulky and 

costly. In addition, the main strategy for powering motion sensors is to use batteries or 

power supplies, which have many disadvantages, such as limited lifetime, rigid 

structure, and environmental pollution [99-103]. Therefore, it is of great significance to 

explore new technologies of energy acquisition in human or environment, to realize 

self-power supply and to reduce the burden for the people with disabilities. 

Towards this goal, Wang et al. have reported a self-powered angle sensor (SPAS) 

which is based on two rotary contact-sliding mode TENG devices, with benefits of 

lightweight, thin thickness and low cost [104]. The SPAS consists of two coaxial parts, 

one is the rotator which mainly includes two groups of radially-arrayed freestanding 

electrodes made up of copper with different central angle, the other is the stator which 

consists of the electrification layer made of a Kapton film and two groups of interdigital 

electrodes made of copper. The SPAS could record angle data of the joints 

flexion/extension, and then transmit to the microprogrammed control unit (MCU), 

eventually, the vital motion parameters and status of joints could display real-time on 

the application (APP), as illustrated in figure 7(a). Figure 7(b) shows The SPAS paves 

a new approach for application for personalized orthopedic recuperation. 

Accurate monitoring of human gait is essential for health assessment and early 

diagnosis, especially for the medical care of the elderly and injured. Abnormal gait may 

be an important predictor of disease risk. Towards this goal, Lin et al. designed a smart 

insole for real-time gait monitoring with the novel air-pressure-driven structure based 

on a TENG, of which the structure is shown in figure 7(c, d) [105]. This sensor consists 

of an elastic air chamber and a TENG which utilize the air pressure within the sealed 

device to achieve the contact and separation events between the two triboelectric layers. 

This sensor could monitor and analyses the injury condition and rehabilitation of the 

patient and also be used as an emergency fall detection alert system for the elder, 

patients and the people with disabilities.  

Lin et al. have proposed a seesaw structured triboelectric nanogenerator (SS-TENG) 

for monitoring the movement of passing objects and human foot [106]. This device 

based on contact-separation working mode is composed of a top triboelectric unit and 

two seesaw-structured linkages that link with a bottom triboelectric unit by flexible 

connectors, as shown in figure 7(e). When the top triboelectric unit is driven downward 

by the external force, a seesaw-like linkage will be triggered to lift the bottom 

triboelectric unit and drive it to move upward, which means that both friction surfaces 
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participate in the relative motion and improve the moving speed, as illustrated in figure 

7(f). Figure 7(g) shows the device could be installed in common shoes for bio 

mechanical energy collection and different states of human motion sensing due to the 

asymmetrical structure. Such devices would be of great help to persons with physical 

disabilities. 

 

 

Figure 7. TENG-based devices for the joint (limb) impaired. (a) Detailed structural 

information of self-powered angle sensor (SPAS), which consists of two TENGs: the 

outer part is named as TENG A (indicated in black) while the inner part is TENG B 

(indicated in blue). (b) The application of SPAS to the recording of joints’ 

flexion/extension angles [104], Copyright (2020) by John Wiley and Sons. (c) The 

smart insoles are assembled into the shoes to serve as a self-powered gait monitoring 

system, and structural design of the TENG-based sensor. (d) Application of the smart 

insoles for warning of fall down. (e) Structure of seesaw structured triboelectric 
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nanogenerator (SS-TENG) [105], Copyright (2018) by John Wiley and Sons. (f) 

Working mechanism and dynamic states of SS-TNEG. (g) Demonstration of SS-

TENG by integrating LED circuit boards; Current signals of SS-TENG under forefoot 

strike and rearfoot strike [106], Copyright (2019) by Elsevier. 

 

3.6 TENG-based devices for human-machine interaction 

Nowadays, smart devices (computers, household appliances, sensors, etc.) have 

brought tremendous convenience to people's daily lives, and people are increasingly 

inseparable from these devices [107]. Using these devices has become a fundamental 

human skill. At present, human-computer interaction devices mainly rely on human 

physical movement or voice interaction. However, due to physical or language defects 

of some disabled people, these traditional human-computer interaction methods are not 

friendly to some handicapped. The artificial interaction system designed for the people 

with disabilities is to use the surviving physical functions, such as part of the limbs, 

blinking, blowing/inhaling, and electromyographic signals, etc., through computer 

coding, to realize the control of the environment [108-110]. Through these assistive 

devices, the people with disabilities can have a convenient, safe, and healthy barrier-

free living environment to the maximum extent. 

Zhang et al. proposed a self-powered sensor driven by breathing, which 

interactively transmits control commands for human-machine interaction through 

breathing. The senor is based on a PET film with a flexible nanowire structure as a 

friction layer and copper as an electrode layer (figure 8(a)) [111]. Its principle is shown 

in figure 8(b), which is a single-electrode TENG. It can obtain the mechanical energy 

of the airflow from the human breath and generate corresponding electrical signals. The 

researchers connected the sensor to the signal processing module and the wireless 

transmission module, converted real-time breathing (Blow and exhale) into command 

signals, and successfully controlled furniture such as lights and fans without relying on 

body movements or language (figure 8(c, d)).  

Pu et al. proposed a hands-free control and typing system through the micromotion 

of eye blink. This system is based on a single-electrode mode TENG which is called 

mechnosensational TENG (msTENG) [112]. It has a multi-layer structure, in which 

PET film is the substrate, FEP film is the friction layer, ITO attached to FEP is the back 

electrode, and natural latex which will contact the skin near the eyes as another friction 

layer. Compared with the traditional electrooculogram signal (~ 1mv), this sensor can 
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effectively capture blinking motion and obtain a voltage (~ 750mv) which is 750 times 

higher than that of electrooculogram. Similarly, adding signal processing and 

transmission modules to control furniture. Moreover, the system realizes the operation 

of typing by blinking. There is a grouped keyboard on the operation interface, the cursor 

will move quickly at a certain frequency, and the required characters can be confirmed 

by blinking. The furniture control system and typing system based on msTENG provide 

a low-cost and convenient human-computer interaction solution for the people with 

disabilities, especially for the limb impaired, which has important practical value.  

Anaya et al. proposed a none contact sensor, based on free-standing configuration 

TENG. Ecoflex and PEDOT: PSS-based film is the key to the sensor as is shown in 

figure 8(e, f) [113]. Due to the triboelectric interaction between the two elements in 

motion, voltage is generated in a separate conductor by non-contact electrostatic 

induction. In addition, the researchers used circuits and python to realize human-

computer interaction by blinking eyes, such as hands-free car control, drone control, 

and driver fatigue monitoring. TENG based sensors of this type are innovative in 

materials and structures, providing a novel design concept for intelligent sensor 

technology, human-machine interaction and promising applications in disability 

assistive tools. 
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Figure 8. TENG-based devices for human-machine interaction. (a, b) Structure and 

Working mechanism of the breath-driven TENG. (c, d) Sketch of a smart wireless 

human-machine interaction system based on the breath-driven TENG for controlling 

electrical equipment [111], Copyright (2019) by Elsevier. (e, f) The demonstration of 

a hands-free typing system to help people experiencing from physical disability to 

communicate with the world. The words on the screen are typed with eye blinking 

[113], Copyright (2020) by Elsevier. 

 

3. Summaries and Perspectives 
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This review systematically summarizes the research progress of TENG as an 

assistive tool (sensing) for the people with disabilities for the first time. As a new 

technology that can directly convert mechanical energy into electrical energy, TENG 

has been successfully applied to the fields of sound sensors, tactile sensors, wearable 

sensors, joint motion monitoring, and human-computer interaction, for people with a 

variety of disabilities. It provides a new choice of assistive devices for the people with 

disabilities. As a sensor, TENG has the advantages of zero power consumption, easy 

manufacturing, lightweight, low cost, etc. It can greatly reduce the threshold for the 

people with disabilities to use modern electronic equipment and personal monitoring 

products, and make the use of assistive devices for the people with disabilities including 

human-computer interaction more convenient. Although the direct application of 

TENG in the field of assistive devices for the people with disabilities is currently 

insufficient for TENG, we expect that significant progress will be made in this field in 

the near future. For example, TENG's structural design and material innovation will be 

used to expand the range of applications for disabled assistive devices, as well as the 

industrialization and commercialization of TENG based sensors to make them more 

suitable for practical applications. Although TENG has enjoyed rapid development in 

recent years, as an emerging technology, more extensive and in-depth research into 

TENG is needed to meet the needs of more extensive applications and the requirements 

of daily use for the people with disabilities, which are summarized as follows: 

Stability and durability of devices: Since TENG is mostly made of polymer and 

metal materials, the friction layer will be consumed during contact, separation or sliding, 

reducing its stability and durability. To solve these problems, further improvements in 

materials are required, or give full play to the advantages of the encapsulation layer. 

For example, replacing rigid materials with flexible ones such as functional hydrogel, 

conductive polymer, ionic conductor and so on will reduce the loss of the device and 

increase their service life. At the same time, if the whole device is made flexible and 

stretchable, its comfort can be greatly enhanced. Appropriate packaging can not only 

effectively protect the device, make it dustproof and waterproof, increase its 

compression resistance, but also optimize the output performance of the device. These 

research directions being studied may become a breakthrough point in the development 

of stability and durability of TENG based devices. Stable devices are of great 

significance to the people with disabilities, which can reduce the number of equipment 

changes and avoid unnecessary trouble. 
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Miniaturization of devices: With the development and maturity of semiconductor 

technology, the size of electronics has become small enough. However, in comparison, 

the current size of TENG is still too large in the research stage of the laboratory due to 

handmade. So that the miniaturization of TENG is also necessary to meet the needs of 

small-scale applications. To solve this problem, industrial processing and 

manufacturing technologies are very necessary, which will be more delicate than 

manual, and can effectively reduce the size of the device, and ensure the uniform 

performance of the device. While reducing the size of the device, the high output 

performance of devices still be needed, which depends on the development of new 

materials science, reasonable structures, and advanced manufacturing technologies. For 

example, more advanced micromachining technology can be used to further study on 

the impact of various microstructures (shape, arrangement, size, etc.) on the output 

performance. In addition, device array is also the future trend to realize the 

diversification of functions. Smaller devices, better output performance and diversified 

functions can make it more widely used in assistive tools for the people with disabilities. 

Such as prosthetic pressure detection, fingertip tactile sensation, etc. 

Optimization of devices: Although the current TENG has the advantages of high 

voltage output and high sensitivity as a sensor, there are still some problems in the 

process of using. For example, when it is used as a wearable sensor, complex human 

activities will cause great signal interference; The output performance of TENG can be 

significantly affected in humid, low, or high temperature environment, and these 

problems still need to be addressed through further optimization. Therefore, it is 

particularly important to study the packaging materials that are moisture-proof, 

corrosion-proof and temperature-insensitive. In addition, some algorithms can be used 

to filter out unwanted clutter, to detect the living state and rehabilitation state of the 

people with disabilities more accurately. 

Integration of systems: Not only the optimum design of TENG needs to be 

perfected, but also the overall system composition. TENG is mainly used as energy or 

sensors at present, just as a display of the application. Current research often transfers 

the collected information to the computer for processing and analysis, which 

dramatically reduces the advantage that these devices can be carried freely, this is far 

from enough as a practical application. Taking human-computer interaction as an 

example, the system architecture, data acquisition circuit, signal processing algorithm, 

and security protocol all need to be deeply customized. Most of the systems are large 
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and lack of high integration, so they need to be highly integrated and miniaturized. 

Real-time on-site acquisition and analysis are the important directions for the 

development of TENG based devices. In addition, the compatibility of TENG as a 

sensor element should also be considered for use in various systems. 

Portable and implantable：The unique advantages of TENG make it suitable for 

the field of health care, including biomedical applications on the body surface and in 

the body, to perform physiological signal detection and play an auxiliary role in organs. 

Therefore, TENG-based biosensors or systems should be portable and implantable. The 

high integration of functions makes such devices portable. For implantable TENG, 

although devices with good short-term biocompatibility have been developed, the long-

term biosafety needs to be further evaluated. In addition, the effective fixation of the 

device on the skin, organs and tissues is also important. The modification of surface 

structure and tissue adhesives can solve this problem, but more effective approaches 

still need to be studied. The continuous innovation of principle, materials and means of 

integration make the functions of these devices richer and more practical for clinical 

diagnosis and monitoring. This is of great significance to the rehabilitation of the people 

with disabilities. 

With the development of materials science, structural mechanics, and engineering 

technology, TENG based assistive devices for the people with disabilities will attract 

more and more researchers to innovate and improve, which will promote the 

development of disability and bring more convenience to the people with disabilities. 

In the future, TENG based assistive devices for the people with disabilities will be 

highly integrated, with richer functions and broader application scenarios. It will not 

only develop rapidly in the field of wearables, but also have a good development 

prospect in large devices such as wheelchair, intelligent prosthetic limb, and interactive 

display screen, and so on. Hope to bring convenience to more types of disabled people. 
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