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A B S T R A C T

Cardiovascular diseases have long posed a significant threat to human health. Wearable devices are increasingly 
vital in cardiovascular health monitoring, disease screening, and early warning because of their non- 
invasiveness, real-time data provision and continuous monitoring capability. The collection, processing, and 
analysis of data in cardiovascular health monitoring involve numerous repetitive and standardized tasks, where 
artificial intelligence (AI) technology plays a pivotal role. AI is particularly effective in handling large volumes of 
data, thus enhancing the diagnostic and predictive capabilities of wearable devices. This review summarizes 
essential indicators for assessing cardiovascular health and provides a comprehensive introduction to commonly 
used non-invasive monitoring methods, including pulse pressure, photoplethysmography, electrocardiogram, 
bioimpedance analysis, seismocardiography/ ballistocardiography, and ultrasonography. Additionally, some 
impressive advances in wearable cardiovascular health monitoring technologies are reviewed and their inte-
gration with AI is highlighted, demonstrating typical application cases from recent years. Finally, the review 
discusses the current challenges of integrating AI into wearable devices for cardiovascular health monitoring, 
focusing on aspects from device design, algorithm optimization, comfort, reliability, and security. With the 
seamless integration of AI and wearable devices, a new generation of wearable intelligent devices promises to 
revolutionize the monitoring, prevention and management strategies of cardiovascular diseases.

Introduction

Cardiovascular diseases (CVDs) are one of the most common causes 
of death worldwide, accounting for one-third of global deaths and 
ranking first among all diseases[1–3]. Moreover, the cost of treating 
CVDs is prohibitively high. According to the World Heart Federation, the 
total cost of treating CVDs worldwide will reach an astonishing $1044 
billion by 2030[4]. CVDs are a series of heart and vascular diseases, 
mainly including hypertension, atherosclerosis, coronary heart disease, 
and myocardial infarction, among others. Early detection and inter-
vention, along with regular risk screening for cardiovascular conditions, 
can significantly reduce the incidence of CVDs[5,6].

Currently, blood pressure (BP), electrocardiogram (ECG) and ultra-
sound are the primary methods for noninvasive CVDs screening[7]. BP 
and ECG are both crucial for evaluating cardiovascular health, but they 
focus on different aspects [8,9]. BP measures the state of circulation, 
while ECG assesses the heart’s electrophysiological state. Continuous 

ECG monitoring aids in identifying heart-related conditions and pro-
vides alerts for specific diseases, such as latent arrhythmias. Ultraso-
nography offers visual information about the heart’s structure and 
function. Clinical instruments for cardiovascular assessment are often 
cumbersome, stationary, and reliant on medical professionals. They also 
involve high costs, lengthy testing times, and the risk of misdiagnosis or 
missed diagnosis. In recent years, there has been an increasing focus on 
the potential of wearable devices to monitor and prevent CVDs. The 
emergence of wearable technology can provide round-the-clock health 
monitoring without affecting users’ daily lives. Highly integrated func-
tions allow users to view various cardiovascular-related physiological 
indicators. Long-term monitoring data can provide doctors with addi-
tional daily insights for diagnosis. Concomitant with the rapid evolution 
of sensing technologies, and propelled by advancements in artificial 
intelligence (AI), big data analytics, cloud computing, and 5 G tele-
communications, state-of-the-art intelligent wearable devices have 
significantly enhanced in both accuracy and efficiency. These devices 
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offer personally tailored auxiliary diagnostic and therapeutic strategies, 
granting users access to superior-quality medical and healthcare ser-
vices. The advent of the Internet of Medical Things powered by intelli-
gent wearable devices represents a transformative approach to the 
monitoring and management of CVDs. By facilitating prevention, 
continuous monitoring, and comprehensive management, it holds the 
promise of significantly reducing both the incidence and mortality rates 
of CVDs.

This review first examines key metrics used in clinical settings for 
cardiovascular health monitoring, covering both cardiac and vascular 
perspectives. It then presents the features and principles of six popular 
wearable cardiovascular health monitoring technologies: pulse pressure, 
photoplethysmography (PPG), ECG, bioimpedance analysis (BIA), seis-
mocardiography (SCG) / ballistocardiography (BCG) and ultrasonogra-
phy. Then, in light of the rapid advancement of AI technology, we 
conducted a comprehensive comparison between traditional clinical 
cardiovascular health assessment methods and the emerging auxiliary 
diagnostic technology augmented by AI. Furthermore, around the six 
cardiovascular health monitoring methods mentioned above, the latest 
representative research progresses on emerging wearable technologies 
integrated with AI aimed at preventing and assisting in diagnosing CVDs 
were introduced. Finally, we summarized and looked forward to the 

future development of intelligent wearable devices for monitoring car-
diovascular health status from device design, algorithm optimization, 
comfort and stability, and safety. Integrating advanced sensing tech-
nologies and machine learning in wearable devices is expected to 
revolutionize CVDs prevention and management, ultimately reducing 
the disease burden on individuals and the global healthcare system 
(Fig. 1).

Vital indicators of cardiovascular health monitoring

To efficiently monitor and assess cardiovascular health, it is essential 
to understand the key indicators that describe and evaluate the state of 
cardiovascular conditions. Here, we roughly divide these indicators into 
two categories, as shown in Fig. 2. One describes the cardiac state, 
including heart rate[10], heart rate variability[11], ECG waveforms
[12], and ejection fraction[13]. These indicators mainly describe the 
electrophysiological, functional, and dynamic states of the heart. 
Another type of indicator that describes vascular status, such as BP[12, 
14], arterial stiffness index[15], vascular compliance[16] and vascular 
wall thickness[17,18] serve to characterize the oxygen transport ca-
pacity of the vessels, the blood flow conditions within the vessels, as well 
as the pliability and stiffness of the vascular walls.

Fig. 1. Schematic diagram of cardiovascular health monitoring and disease assisted diagnosis process combining emerging wearable devices and AI. Collect 
physiological information such as pulse waves, ultrasound, and ECG from the human body, and then transmit it to AI diagnostic models, ultimately achieving the 
goals of disease diagnosis and health monitoring. Reproduced according to the terms of the CC-BY Creative Commons Attribution 4.0 International license[153,154, 
162,167]. Reproduced with permission[96], Copyright 2018, Springer Nature[50]. Reproduced with permission, Copyright 2018, Springer Nature.

Fig. 2. Important indicators of cardiovascular health monitoring.
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The heart and vessels share a close, interdependent relationship and 
together comprise the cardiovascular system[19,20]. The heart de-
termines the flow and pressure of blood, acting as a pump to deliver 
blood throughout the body[21]. The state of the vessels—such as their 
width, elasticity, and resistance—affects blood flow. Conversely, the 
heart and vessels influence each other. For example, the pumping power 
of the heart towards blood (cardiac output) directly affects BP. On the 
contrary, if vascular resistance increases, the heart needs more force to 
pump blood, which may result in a faster heart rate. In summary, the 
physiological indicators related to the heart and vessels are closely 
interconnected. Understanding the relationship between these two parts 
is crucial for the assessment and monitoring of cardiovascular health.

When monitoring cardiovascular health, each indicator has its 
unique significance and value. Specifically, heart rate refers to the 
number of times the heart beats per minute, which can reflect the blood 
supply to the body and the health status of the heart. In healthy adults, 
the resting heart rate typically ranges from 60 to 100 beats per minute. A 
heart rate exceeding 100 beats per minute is classified as tachycardia, 
whereas one that falls below 60 beats per minute is termed bradycardia. 
Persistent tachycardia or bradycardia may indicate underlying cardiac 
abnormalities such as myocarditis or sick sinus syndrome, among other 
conditions[22–24]. Heart rate variability refers to the change in the 
interval time between heartbeats, reflecting the stability of the auto-
nomic nervous system of the heart, which is an important indicator for 
evaluating heart function. Ejection fraction is a parameter used to assess 
the heart’s pumping efficiency. Typically, a normal ejection fraction 
ranges from 55 % to 70 %. ECG is one of the most commonly used in-
dicators for cardiac assessment in clinical settings. It is highly valued for 
its ability to provide essential information about cardiac electrical ac-
tivity quickly, simply, and non-invasively. The ECG is extremely useful 
for detecting and diagnosing various cardiac conditions, including ar-
rhythmias[25–28] and myocardial infarctions[29]. An ejection fraction 
below the normal range is generally considered an indicator of reduced 
cardiac pumping function. An ejection fraction below 40 % is often 
regarded as one of the criteria for heart failure[30,31].

In assessing vascular health, both systolic and diastolic BP, are crit-
ical indicators. Elevated BP can increase heart burden and risk of 

coronary heart disease, while low BP may cause dizziness and chest 
tightness[32–34]. The arterial stiffness index, assessed by pulse wave 
velocity, reflects the elasticity or stiffness of the arteries and is an 
important indicator of arterial status[15]. Vascular compliance, defined 
as the ability of blood vessels to dilate and contract, is assessed by BP 
waveforms and reflects the health of blood vessels[16]. Its decrease is 
commonly observed in atherosclerosis. Increased vessel wall thickness, 
which can be assessed by imaging techniques such as ultrasound, is an 
early sign of atherosclerosis[17,18].

The utilization of these indicators enables efficient evaluation of 
cardiovascular health, facilitating the detection and prevention of CVDs. 
To collect and utilize these indicators more effectively, a range of 
sensing technologies and devices based on various principles has been 
developed, including but not limited to pulse pressure, PPG, ECG, BIA, 
BCG/SCG, and ultrasonography[35]. These advancements enable a 
thorough cardiovascular health assessment, offering diverse insights, 
enhancing diagnostic accuracy, and improving intervention timeliness.

Sensing technologies for cardiovascular health monitoring

Various methodologies currently collect cardiovascular health in-
dicators using sensors operating on distinct principles. These sensors can 
be roughly divided into sensing technologies based on mechanical, op-
tical, electrical, and acoustic principles.

Pulse pressure
Pulse waves are pulsations within arteries caused by cardiac con-

tractions[36], containing rich cardiovascular health information, such 
as the elasticity of the artery blood vessel and the extent of arterio-
sclerosis[37]. Pulse diagnosis serves as an important diagnostic instru-
ment in various traditional medical practices. However, traditional 
pulse diagnosis relies heavily on the personal experience and subjective 
judgment of experienced practitioners, leading to a pronounced 
subjectivity and a lack of uniform evaluation standards in the diagnostic 
results. Pressure sensors can objectively and effectively monitor many 
parameters of pulse waves, such as frequency, amplitude, pulse width, 
rise time, and transit time. By analyzing these parameters, 

Fig. 3. Principles, detection methods and signal characterization of pulse pressure sensors. a) Schematic diagram of pulse monitoring and pressure sensor structure, 
b) Pulse waves in integral and differential forms, c) Pulse waves in relation to BP, systolic and diastolic pressures.
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corresponding physiological indicators can be determined to ascertain 
cardiovascular health status.

Wearable pressure sensors, distinguished by their flexibility, 
stretchability, high sensitivity, quick response times, and excellent 
biocompatibility, have unique advantages in pulse wave monitoring, 
making them a hot research topic recently. The structure of the wearable 
pressure sensors mainly includes the sensing layer, electrode layers, and 
structural layers, as shown in Fig. 3a. Different sensing layers have 
different shapes of pulse wave signals due to different sensing principles. 
In pulse wave analysis, in order to simplify understanding, the pulse 
wave signal is described and analyzed in two forms: "differential 
waveform" and "integral waveform", as shown in Fig. 3b. The differential 
forms of waveforms are often associated with rapid dynamic pressure 
changes, such as the signals captured by piezoelectric sensors. Such 
sensors are very sensitive to instantaneous pressure changes and, 
therefore, are able to capture rapid pressure fluctuations caused by a 
beating heart. This waveform usually shows a higher peak value and a 
clear peak, which can be regarded as the "differential" form of the 
heartbeat pressure wave. The integral form of the waveform reflects the 
cumulative effect of pressure changes. For example, the signal captured 
by a piezoresistive or capacitive sensor is representative of the integral 
form of the pulse wave. Such sensors are more sensitive to sustained 
pressure changes, so their waveforms may be smoother, showing cu-
mulative changes in pressure over time. This waveform can be viewed as 
the "integral" form of the heartbeat pressure wave. In short, the pulse 
waveform is a complex continuous waveform signal, which contains 
both the detailed information of small changes (differential waveform) 
and the characteristic information of the overall waveform (integral 
waveform)[38–40]. The differential form of pulse wave focuses on 
specific details and is particularly suitable for assessing the immediate 
response and health status of the heart, such as changes in heart rate, 
regularity of heartbeats, and strength of heart contractions. This wave-
form provides crucial information when monitoring transient yet sig-
nificant cardiac events such as arrhythmias and premature heartbeats. 
Integral pulse waveforms are suitable for monitoring changes in BP, 
vascular compliance, and overall circulatory health, as shown in Fig. 3c. 
For monitoring chronic CVDs, such as hypertension and arteriosclerosis, 
the integral pulse waveforms can provide information on long-term 

blood flow dynamic changes[41]. By utilizing professional signal pro-
cessing software or algorithms, these two types of waveforms can be 
converted into one another, catering to various clinical and research 
requirements.

Comprehending the specific characteristics and implications of the 
pulse wave is essential for the accurate assessment of cardiac and 
vascular health. Researchers have studied different feature points on a 
single pulse wave and determined that each feature point holds a unique 
meaning[42]. In the integral form of the pulse wave, as shown in Fig. 3b, 
the number 1 represents the main wave, the highest peak of the pulse 
wave. Studies have shown that changes in BP can also be reflected to 
some extent in the pulse waveform[43]. A single pulse waveform can be 
used to predict BP after a correlation between the two has been estab-
lished. The height of the main waveform may reflect to some extent the 
pressure of the heart during contraction; the shorter the duration of the 
main waveform, the faster the heart is contracting. Number 2 represents 
the tidal wave, the first trough and peak after the main wave, reflecting 
the regurgitation phenomenon when the aortic valve closes. The number 
3 represents the dicrotic notch, which is the local minimum value of the 
descent after the tidal wave. The position and depth of the descending 
gorge can reflect the elasticity and resistance state of the blood vessels, 
usually indicating diastolic BP. The number 4 represents the dicrotic 
wave, which is usually smaller than the tidal wave in the ascending 
section after the dicrotic notch and represents the blood refluxing to the 
left ventricle.

The differential form of the pulse wave usually contains seven 
characteristic points: As shown in Fig. 3b, point a represents the early 
stage of ventricular contraction, corresponding to the highest value of 
systolic BP; point b marks the end of the main wave, representing the 
beginning of ventricular relaxation; Point c reflects the intra-aortic 
regurgitation when the mitral valve is temporarily closed; point d is 
the descending isthmus area between the main wave and the tidal wave, 
and its length is related to the degree of BP reduction; point e represents 
the descending part of the slow wave, which is related to arterial elas-
ticity and resistance; point f marks the time for the pulse wave to 
propagate to the terminal, reflecting the resistance state of the arteriole; 
point g reflects the microcirculatory response and terminal pressure
[38]. These feature points are of great significance in assessing 

Fig. 4. Principles, detection methods and signal characterization of PPG. a) Schematic diagram of PPG sensor detection, b) Signal composition diagram of PPG 
sensor, c) Schematic diagram of PPG sensor measuring blood oxygen.
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cardiovascular health status. By further extracting, analyzing and 
calculating the amplitude and location information of these feature 
points, a series of important indicators reflecting cardiovascular health, 
such as arterial stiffness index, pulse wave velocity, augmentation index, 
pulse propagation time, etc., can be obtained. These parameters help 
physicians diagnose early signs of atherosclerosis, hypertension and 
other CVDs more accurately.

Pulse pressure sensors are typically used for mechanical signaling of 
superficial arteries and are highly sensitive to changes in vessel elasticity 
and thickness. However, they are susceptible to pulse position, depth 
variations, and motion artifacts, and have difficulty detecting deeper 
tissues. To address these limitations, the material selection and struc-
tural design of the sensor can be optimized to improve its accuracy and 
application range. In terms of material selection, the structural layer of 
wearable pulse pressure sensors usually uses polydimethylsiloxane 
(PDMS), silicone, polyurethane, and other elastic materials with good 
mechanical properties and biocompatibility. The conductive layer 
typically employs intrinsically stretchable materials such as liquid 
metal, conductive polymers, or utilizes stretchable patterned metal 
electrodes that can conduct the collected electrical signals. The sensing 
layer commonly utilizes sensitive materials such as piezoelectric mate-
rials, conductive polymers, and nanomaterials that can respond accu-
rately and reliably to pressure changes. Regarding structural design, 
wearable pulse pressure sensors often adopt a multi-layer film structure, 
ensuring a close fit and conformal well to the skin. The application of 
microstructures, such as the design of micro-pyramid array patterns, 
further enhances the sensitivity of pressure sensors to minute pressure 
variations, thereby increasing the accuracy of cardiovascular health 
monitoring. In addition, the encapsulation structure design helps 
improve the durability and stability of the sensor, allowing it to maintain 
performance over long periods of use.

PPG
PPG is a non-invasive monitoring technique based on the principles 

of photoelectricity, used to detect blood volume changes in the vascu-
lature of living tissues. In clinical medical practice, PPG is commonly 
utilized to record changes in blood perfusion, which can be assessed 

through the analysis of microcirculatory blood flow in the skin or other 
superficial body areas. The basic principle of PPG technology is to emit 
light (usually red, green, or near-infrared) from the surface of the skin 
and measure the amount of light reflected or transmitted back to the 
sensor through the tissue[44,45]. Due to the absorption characteristics 
of hemoglobin in the blood for specific wavelengths of light, the periodic 
changes in blood volume caused by the beating of the heart lead to 
changes in the amount of absorbed light, resulting in corresponding 
changes in photoelectric signals.

As shown in Fig. 4a, PPG mainly includes a light source (usually a 
light-emitting diode, LED) for emitting light, a photodetector for 
receiving penetrating or reflecting light and converting light signals, and 
the necessary signal processing circuits for analog-to-digital conversion 
and filtering circuits. In terms of signal detection, PPG stands out for its 
high sensitivity in detecting changes in blood volume, its non-invasive 
and convenient acquisition method, and its fast signal processing. 
Furthermore, the easy integration and scalability of PPG sensors render 
them a preferred option for contemporary wearable technology. Boast-
ing benefits such as stable performance, capability for continuous 
monitoring, and cost-effectiveness, PPG sensors are now widely incor-
porated in most commercial wearable devices for daily health tracking 
and long-term monitoring.

In practical applications, when light from LED passes through skin 
tissue and is reflected back to the photosensitive sensor, there will be a 
certain attenuation. The flow of blood in arteries changes the absorption 
of light, while the absorption of light by muscles, bones, veins, and other 
connecting tissues remains basically unchanged. Therefore, when light 
is converted into electrical signals, the obtained signals can be divided 
into direct current (DC) signals and alternating current (AC) signals. 
Extracting the AC signal from it can reflect the characteristics of blood 
flow, enabling the acquisition of cardiovascular-related information 
such as pulse waves and heart rate, as shown in Fig. 4b.

Another important and widely used application of PPG sensors is the 
measurement of arterial oxygen saturation (SpO2)[45]. Due to the 
presence of both oxygenated hemoglobin (HbO2) and deoxyhemoglobin 
(Hb) in the blood, which have different light absorption rates, the dif-
ferential optical absorption properties of HbO2 and Hb can be utilized to 

Fig. 5. Principles, detection methods and signal characterization of ECG. a) Schematic diagram of ECG sensor detection, b) Schematic of the measurement method 
for ECG, c) Classification of ECG leads, d) Schematic diagram of 12 lead monitoring direction model for ECG, e) Schematic waveform of monitoring direction model 
for 12 lead ECG.
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measure SpO2. Specifically, the absorption characteristics of HbO2 and 
Hb in the wavelength range of 600–1000 nm are shown in Fig. 4c. It can 
be observed that the absorption coefficient of Hb is higher in the range of 
600–800 nm, while the coefficient of HbO2 is higher in the range of 
800–1000 nm. Therefore, red light (600–800 nm) and near-infrared 
light (800–1000 nm) can be used to detect the PPG signals of HbO2 
and Hb, respectively, and the corresponding ratios can be calculated 
through programming to obtain SpO2 levels. The normal range of SpO2 
is between 95 % and 100 %, when a SpO2 level below 95 % indicates 
potential hypoxia in the body, suggesting possible cardiopulmonary 
dysfunction[46].

One of the key challenges in PPG technology is its sensitivity to 
motion artifacts and ambient light variations[47]. Motion artifacts can 
introduce signal noise, while skin characteristics (such as skin tone) can 
also affect the measurement results. Developing sensor housing mate-
rials that can resist motion artifacts is a potential solution[48]. Addi-
tionally, using high-performance photodetection materials and 
multi-wavelength LEDs can effectively improve light absorption and 
signal sensitivity [49–51]. Simultaneously, advanced signal processing 
algorithms can be utilized to filter out noise. These improvements help 
to reduce signal interference and improve the reliability of PPG sensors.

ECG
ECG is a crucial non-invasive method for diagnosing CVDs by 

recording the heart’s electrophysiological activity during each cardiac 
cycle. It measures the sequential bioelectrical signals generated by the 
sinoatrial node, atrium, and ventricle, providing valuable data to assess 
heart health and diagnose various CVDs [52,53]. The results of ECG are 
usually displayed in the waveforms, taking the most common waveform 
of lead II as an example, as shown in Fig. 5a, which includes P-wave, 
QRS complex, and T-wave[54]. The P-wave represents atrial depolari-
zation, which is the electrical activity of the atrial muscles. It reflects the 
beginning of atrial contractions, usually the first waveform on an ECG. 
The QRS complex represents ventricular depolarization, the most sig-
nificant part of cardiac electrical activity. It reflects the contraction of 
ventricular muscles responsible for pumping blood from the heart to the 
whole body. Under normal circumstances, the duration of the QRS 
complex is relatively short, indicating that the ventricular 

depolarization process is rapid and synchronous. The T-wave represents 
ventricular repolarization, the recovery stage of ventricular muscle 
electrical activity. It appears after the QRS complex and is usually the 
last major waveform in the ECG. The shape, amplitude, and direction of 
the T-wave can provide important information about the uniformity of 
ventricular repolarization. The U-wave is usually smaller and appears 
after the T-wave. The exact origin of U-waves is still not fully under-
stood, and it may be related to the late repolarization of ventricular 
muscles.

ECG is a comprehensive reflection of the electrical activity of 
countless myocardial cells in the heart, which means that ECG depicts 
the electrophysiological state of the entire heart rather than being 
limited to any single region. It forms a comprehensive electrophysio-
logical map by capturing and integrating electrical signals from various 
parts of the heart. Measuring ECG signals requires connecting electrodes 
to multiple parts of the body. A simple ECG test only requires placing 
three electrodes on the torso to complete the measurement of leads I, II, 
and III, as shown in Fig. 5b. The standard ECG in medicine usually re-
quires simultaneous twelve-lead testing, as shown in Fig. 5c, which in-
cludes bipolar leads(I, II, III) and unipolar leads. Unipolar leads can be 
divided into augmented unipolar leads (V1, V2, V3, V4, V5, V6) and 
chest wall leads (aVL, aVR, aVF). As shown in Fig. 5d, the twelve-lead 
ECG monitors the electrical activity of the heart from twelve different 
perspectives, resulting in a unique waveform pattern for each lead that 
produces electrical signals of different shapes and characteristics as 
shown in Fig. 5e. This multidimensional view provided by the multi-lead 
ECG is exceptionally beneficial for accurately locating cardiac abnor-
malities, such as pinpointing the specific areas of myocardial infarction
[29], increasing the detection rate of pathological changes, and offering 
detailed analysis of arrhythmias. However, considering the professional 
operation requirement and the high costs involved, multi-lead ECG are 
generally served for clinical examinations. For some simple heart rate 
abnormalities, a single-lead ECG may suffice. Furthermore, single-lead 
ECG is more portable and user-friendly, making it suitable for integra-
tion with wearable devices for quick screenings and continuous moni-
toring of cardiovascular status, such as in-home health management 
scenarios.

ECG is used to diagnose various CVDs by detecting irregular 

Fig. 6. Principles, detection methods and signal characterization of BIA. a) Schematic diagram of BIA measurement, b) Composition of electrical resistivity of 
different tissues in the human body, c) Flow chart of BIA used for CVDs analysis.
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heartbeat rhythms and changes in ECG features[55]. For example, 
ST-segment depression or elevation, and T-wave inversion can indicate 
myocardial ischemia, while ST-segment elevation and Q-wave deep-
ening are associated with myocardial infarction[56,57]. QRS complex 
widening and ST-segment depression can suggest ventricular hypertro-
phy, and prolonged P-R intervals can indicate cardiac conduction block
[58,59]. Additionally, ECG can be employed for dynamic monitoring of 
heart health, particularly using portable devices like Holter monitors, 
which continuously record ECG data over extended periods to track 
arrhythmias and other abnormal heart activities[60,61].

The main challenges in the application of ECG technology include 
the problems of signal interference and accuracy of electrode position
[47,62]. Signal interference mainly originates from electromagnetic 
noise, electromyographic signals, and motion artifacts, which may 
significantly affect signal quality and diagnostic accuracy. To address 
these challenges, in recent years, hydrogel materials with high con-
ductivity, good biocompatibility, and modulus matching that of the skin 
have been developed for use as ECG electrodes. These materials can 
improve signal quality, comfort, and stability, effectively reducing the 
impact of motion artifacts on the signal[63,64]. In addition, intelligent 
signal processing techniques (e.g., AI-based denoising algorithms) are 
being applied to analyze and correct interference in ECG signals in real 
time, further improving signal clarity and diagnostic accuracy[65–67]. 
These technological and material advances have significantly improved 
the reliability and utility of ECG monitoring.

BIA
Bioimpedance refers to the capacity of biological tissues to obstruct 

or resist the flow of electrical current[68]. BIA is a technique used to 
measure the biological impedance of the human body and calculate its 
composition. BIA applies an electrical stimulus (current or voltage) to 
the human body from the outside and measures the resistance and 
reactance when passing through human tissue, thereby inferring the 
conductivity and capacitance of the tissue. And the composition of the 
human body can be further calculated using formulas. Bioimpedance has 
the characteristics of fast detection speed, low cost, and non--
invasiveness[69].

In cardiovascular health assessment, BIA techniques are used to 

monitor the activity and function of human organs. An impedance 
cardiogram is the information obtained when monitoring the human 
heart using bioelectrical impedance techniques. Using BIA technology, 
an excitation signal can be sent to the area being tested by placing a 
system of electrodes on the body’s surface. The detection electrodes 
collect feedback information, and the corresponding impedance values 
and their changes are calculated by analyzing this data. Further, by 
comprehensively analyzing the impedance information, the physiolog-
ical or pathological state of the corresponding part can be assessed, and 
thus whether a lesion exists therein. During a heart beat, blood is 
injected regularly into the aorta, resulting in changes in aortic volume, 
which in turn causes changes in impedance cardiogram. These changes 
simultaneously affect multiple physiological parameters such as cardiac 
output. Therefore, as shown in Fig. 6a, by measuring the bioelectrical 
impedance of the thoracic cavity and its changes, key physiological 
parameters such as cardiac output can be reflected[70]. In addition to 
the impedance cardiogram, BIA can also measure the body’s structural 
composition, which mainly includes the measurement of cell mass, 
extracellular mass, fat mass and total body water, as shown in Fig. 6b
[71]. The measurement of fat mass can assess the distribution of 
essential and stored fat, which is related to the risk of CVDs[72].

The quality of the bioelectrical impedance signal is mainly deter-
mined by the frequency and phase angle, as shown in Fig. 6c. The se-
lection of different frequencies allows penetration of different layers of 
biological tissue, thus obtaining detailed information about the intra and 
extracellular environment, which is essential for health assessment of 
the cardiovascular system. Phase angle, as the phase difference between 
current and voltage, provides critical data about the electrical activity of 
heart cells and cell membrane function, helping to monitor the systolic 
and diastolic function of the heart, and thus assessing cardiac health. 
These measurements are valuable in the early diagnosis and manage-
ment of CVDs[73].

In summary, the impedance cardiogram method is used to detect 
changes in blood flow in the cardiovascular system by placing electrodes 
on the body surface to monitor important physiological parameters, 
such as cardiac output, by utilizing the difference in electrical conduc-
tivity between blood and other tissues. Correct electrode placement and 
appropriate excitation frequency are key to accurate cardiovascular 

Fig. 7. Principles, detection methods and signal characterization of SCG/BCG. a) Schematic diagram of SCG/BCG measurement, b) SCG/BCG for CVDs and health 
management, c) Comparison of SCG/BCG and ECG waveforms.
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monitoring using BIA[74]. In practice, the correct placement of the 
electrodes is crucial, as the complexity of the human structure and in-
dividual differences may lead to inaccurate test results. In addition, the 
choice of excitation frequency is also a critical factor, as different fre-
quencies have different abilities to penetrate tissues, affecting the ac-
curacy of measurement results. Therefore, rational selection of the 
excitation frequency as well as precise control of the electrode position 
are key to improving the value of electrical impedance measurements in 
cardiovascular health monitoring. Although this method provides crit-
ical blood flow information, the results are less specific and cannot be 
used directly to determine the cause of disease[75]. Therefore, the BIA 
method is primarily used as an adjunct to clinical diagnosis, in combi-
nation with other tests to enhance diagnostic accuracy.

SCG/ BCG
SCG is a non-invasive technique that monitors heart function and 

cardiovascular health by detecting cardiac vibrations on the chest sur-
face, as shown in Fig. 7a[76]. This method utilizes an accelerometer to 
record mechanical vibration signals from the heart during its contrac-
tion and relaxation. SCG provides insights into the dynamics and 
structure of cardiac function, including blood flow characteristics and 
heart valve performance. It is instrumental in assessing the functional 
status and pathological alterations of the heart, as well as evaluating 
cardiac load. Additionally, SCG is valuable for tracking the outcomes of 
cardiac surgeries and the progress of cardiac rehabilitation. It holds 
promise for the ongoing assessment and management of patients with 
valvular heart disease, cardiomyopathy, and other cardiovascular con-
ditions[77].

BCG is a technique that assesses cardiovascular function through the 
detection of mechanical vibrations and reactive forces generated by the 
heart’s activity, impacting the entire body [78,79]. To capture these 
signals, sensors are usually placed on the back, buttocks, and soles of the 
feet (Fig. 7a)[80]. BCG offers valuable insights into the heart’s 
contraction and relaxation phases, along with metrics on cardiac output 
and overall cardiovascular performance. It plays a crucial role in 
monitoring variations in cardiac load, including changes in blood vol-
ume and BP. Furthermore, BCG is instrumental in the evaluation of 

cardiovascular health, aiding in the diagnosis of coronary heart disease, 
and supporting various other cardiovascular investigations[81].

The distinctions between SCG and BCG lie primarily in their mea-
surement principles, signal characteristics, and clinical applications, 
despite both utilizing mechanical sensors to capture heart-related sig-
nals for evaluating heart function and cardiovascular health. SCG fo-
cuses on the vibrations produced by the myocardium and the heart 
valves’ opening and closing processes. This allows SCG to provide 
detailed information on heart muscle contraction and relaxation, heart 
valve function, pulse wave transmission time, ventricular contraction 
velocity, myocardial contraction force, and coronary artery blood flow, 
as shown in Fig. 7b. The frequency of the SCG signal is usually less than 
25 Hz[82]. These signals are characterized by short rise and fall times 
and distinct and sharp pulse shapes, reflecting the activity of the 
myocardial wall, as shown in Fig. 7c. BCG, on the other hand, captures 
the body’s overall reaction to cardiac pulsations, offering insights into 
cardiac output and overall cardiovascular function. It can provide 
physiological indicators such as heart rate, BP, sleep level, respiratory 
rate, and heart rate variability[83]. BCG signals are lower in frequency, 
usually ranging from 0.8 Hz to 15 Hz, and exhibit longer rise and fall 
times with smoother pulse shapes and appearance[84]. This difference 
in signal characteristics is due to BCG’s focus on the overall bodily 
response to the heart’s activity rather than the direct mechanical actions 
of the heart itself. In addition, the units of SCG and BCG are not the 
same. SCG records the acceleration of the chest wall and has 
mili-gravitational units (mg), while BCG represents the displacement of 
the subject’s center of mass, which is then converted to units of force by 
the spring constant of the graduated platform and has units of newtons 
(N)[85].

In summary, SCG provides a more localized, high-frequency analysis 
of heart function, which is particularly useful for assessing myocardial 
and valvular activity. In contrast, BCG offers a broader perspective, 
capturing the overall cardiovascular system’s response to heartbeats, 
which is useful for evaluating cardiac output and general cardiovascular 
health. Both techniques utilize accelerometers—SCG uses chest- 
mounted sensors, while BCG employs sensors on various body parts. 
Although both methods are suitable for the detection of cardiac load, 

Fig. 8. Principles, detection methods and signal characterization of ultrasonography. a) Schematic diagram of ultrasound examination, b) Principle of ultrasound 
examination, c) Ultrasonography for detecting carotid artery. Reproduced according to the terms of the CC-BY Creative Commons Attribution 4.0 International 
license[192].
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they face challenges with noise due to their sensitivity to physical 
movement and environmental vibrations. The development of micro-
electromechanical systems (MEMS) technology has made SCG/BCG 
sensors more precise, compact, and easy to integrate. Furthermore, 
flexible electronics technology allows these sensors to be designed to 
better conform to the contours of the human body, effectively reducing 
motion noise and improving signal quality and comfort. In terms of 
materials, some new piezoelectric materials, with their excellent me-
chanical and electrical properties, can significantly enhance the sensi-
tivity, resolution, stability, and dynamic range, enabling the sensors to 
perform exceptionally well in detecting extremely weak cardiovascular 
vibration signals.

Ultrasonography

Ultrasound refers to sound waves generated by an object (sound 
source) vibrating at frequencies above 20,000 Hz, exceeding the audible 
range of the human ear. Compared to light and heat, ultrasound boasts a 
significant penetration depth in human tissues. Ultrasonography is a 
technique that utilizes the physical properties of ultrasound waves and 
the acoustic parameters of human tissues to create images. Renowned 
for being non-invasive, highly precise, capable of deep penetration, and 
free from ionizing radiation[86,87], it is extensively used in clinical 
examinations and medical diagnostics, earning the moniker "the doc-
tor’s eyes." Since the 1950s, ultrasound technology has evolved from 
B-mode ultrasound[88], color doppler ultrasound[89], 
three-dimensional ultrasound[90], and four-dimensional ultrasound
[91,92] to today’s flexible wearable ultrasound patches, enabling dy-
namic imaging from two-dimensional to four-dimensional as well as 
real-time, continuous long-term monitoring [93–96].

The core component of an ultrasound system is the transducer, which 
is usually composed of piezoelectric material. When AC voltage is 
applied to piezoelectric materials, it will generate mechanical vibration 
or deformation. This vibration can be converted into ultrasonic signals 
through piezoelectric sensors and propagated to internal tissues of the 
human body. When ultrasound passes through human tissues, it will 
reflect and refract at the interface between different tissues such as 
blood vessels. These reflections and refractions can cause changes in the 
path of ultrasound, resulting in the formation of echo signals. The echo 
signal of ultrasound can be captured by the probe receiver and converted 
into a visualized image through signal processing and imaging algo-
rithms to provide detailed information on the internal structure of the 
human body, as shown in Fig. 8a.

In the field of ultrasound imaging, depth of detection and resolution 
are key metrics for evaluating the performance of imaging technologies
[97,98]. For example, as shown in Fig. 8b, ultrasound with a frequency 

of 3 MHz provides a detection depth of 100–200 mm with a resolution of 
1 mm. Ultrasound at 10 MHz, on the other hand, provides a depth of 
detection of 60–120 mm, but with an increased resolution of 0.3 mm
[99]. This difference suggests that higher-frequency ultrasound is more 
effective in resolving fine structures, although at a reduced depth of 
penetration. This difference in resolution is particularly important in 
vascular imaging applications such as imaging of the carotid, brachial 
and radial arteries. The carotid arteries are typically 30 mm deep and 
about 5 mm in diameter, making them suitable for fine imaging using 
high-frequency ultrasound, and the actual ultrasonography of the ca-
rotid arteries by the ultrasound device is shown in Fig. 8c. The smaller 
diameters of the brachial and radial arteries (diameters of 4 mm and 
1.5 mm, respectively), located at a depth of 14 mm and 4 mm, respec-
tively, also suggest that clearer images of the vessel wall and sur-
rounding tissues can be obtained using higher-frequency ultrasound. 
Therefore, clinical diagnosis and disease monitoring in cardiovascular 
health monitoring requires the selection of an appropriate ultrasound 
frequency based on the depth of the location to be detected and the 
required resolution [100].

Ultrasonography can also be used to evaluate cardiovascular func-
tion. For example, in vascular ultrasound, anterior wall echoes reflect 
features of the anterior surface of the tissue, such as organ morphology 
and location, while posterior wall echoes reflect information about the 
posterior surface of the tissue, such as organ contour and reflectivity 
[87]. The time difference between the anterior and posterior wall echoes 
can be used to calculate the speed of sound and to assess the nature and 
state of the tissue [101]. By measuring the time difference, information 
about tissue density, elasticity and sound transmission properties can be 
obtained [102]. In addition, ultrasonography can be used to evaluate 
cardiac function [95], and to calculate central venous pressure in blood 
flow imaging [96]. Ultrasonography can also be used to observe the 
working conditions of heart valves [103]. Through ultrasonography, 
doctors can check whether the valve opening and closing are normal, 
and whether there is valve disease, such as stenosis or incomplete 
closure, to guide treatment and surgical decision-making.

Ultrasonography utilizes acoustic signals to effectively visualize the 
structures of the heart and blood vessels, providing real-time imaging 
that is invaluable for diagnosing blood flow-related diseases. Despite its 
benefits, it relies heavily on professional operating experience and in-
curs high equipment costs, coupled with complex signal processing re-
quirements. Addressing these challenges could involve developing user- 
friendly systems with automated image processing capabilities and 
exploring cost-effective equipment solutions to make ultrasonography 
more accessible and easier to use in various application scenarios.

Table 1 
Comparison of wearable cardiovascular monitoring technologies: signal sources, detection sites, signal types, advantages, and limitations.

Technology Signal source Detection site Signal type Advantages Limitations

Pulse pressure Arteries Superficial 
arteries

Mechanical 
signal

Highly sensitive to changes in vascular 
elasticity and thickness, simple device 
structure and low cost

Limited sensitivity to deeper tissue 
variations, wide variation in pulse location 
and depth, susceptible to motion artifacts

Photoplethysmography Photoemitter Fingertip, 
wrist

Optical signal Easy to use, advantageous for monitoring 
blood volume, portable and low cost

Accuracy can be influenced by skin 
characteristics, affected by light noise, 
susceptible to motion artifacts

Electrocardiogram Sinoatrial 
node

Hands, feet, 
chest

Electrical 
signal

Accurate detection of electrical activity in 
the heart, essential for diagnosing 
arrhythmias and myocardial infarction

Prone to noise interference, requires precise 
electrode placement, susceptible to skin 
contact quality

Bioimpedance analysis AC signal 
generator

Artery blood 
vessel, chest

Electrical 
signal

Detectable body fluid volume, suitable for 
heart failure management, easy to use

Affected by electrode positioning, hydration 
levels, large individual differences, 
accuracy limited by measurement principle

Seismocardiography/ 
ballistocardiography

Heart Chest Mechanical 
signal

Suitable for cardiac mechanical activity 
analysis, high temporal resolution, 
detectable cardiac load, easy to deploy

Highly sensitive to physical movement and 
environmental vibrations, susceptible to 
noise

Ultrasonography Ultrasonic 
emitter

Most blood 
vessels, heart

Acoustic 
signal

Visualization structures of the heart and 
blood vessels, suitable for diagnosing blood 
flow-related diseases, real-time imaging

Dependent on professional operating 
experience, higher equipment cost, complex 
signal processing
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Comprehensive perspectives in cardiovascular health monitoring

Cardiovascular health monitoring relies on a range of technologies, 
which can be categorized into two main groups. The first category is the 
direct measurement of signals generated by cardiovascular activities, 
such as pulse pressure, ECG, SCG/BCG. These signals are directly 
captured by corresponding smart wearable devices, which are able to 
reflect the physiological state of the cardiovascular system in real-time. 
The second category is the method of collecting reflected signals through 
physical means such as light, electricity, sound, etc., which are used in 
the human body without harmful, including PPG, BIA and ultrasonog-
raphy [104–108]. Unlike direct measurement of signals that are mainly 
reflected on the body surface, methods that utilize physical signals such 
as light, electricity, and sound can detect deeper cardiovascular states. 
For example, PPG reflects changes in blood volume, BIA analyzes tissue 
composition, and ultrasonography provides detailed images of cardiac 
structures [109–113]. While these technologies collectively enhance the 
ability to diagnose and manage CVDs, each has inherent limitations. 
Table 1 compares and summarises different non-invasive monitoring 
methods regarding the signal source, detection site, and signal type for 
each technology, alongside their advantages and limitations[114–118].

In practical clinical scenarios, it is essential to select the appropriate 
diagnostic method tailored to the patient’s specific symptomatic char-
acteristics to analyze the cardiovascular structure and functional status, 
leading to an accurate diagnosis. For certain complex conditions, it may 
also be necessary to employ multiple diagnostic techniques simulta-
neously, allowing for a comprehensive assessment from various angles. 
Multimodal sensing acquires a variety of cardiovascular information by 
collecting various physiological signals from different perspectives, such 

as mechanical, optical, electrical, and acoustic, and integrating multiple 
physiological data. In addition, multidimensional cardiovascular infor-
mation can also be obtained from clinical case reports, imaging images, 
and biochemical indicators[119–121]. However, there are significant 
challenges in integrating these diverse data sources, exploring their 
interconnectivity, and establishing deep mapping relationships between 
multimodal signals and multidimensional cardiovascular health states. 
To address these problems, there is an urgent need for a technology that 
can efficiently process and interpret complex heterogeneous data [122, 
123]. AI can enhance data analysis and interpretation, reducing the 
complexity and individual variability encountered in traditional data 
analysis[124,125]. By incorporating AI, the precision and reliability of 
cardiovascular monitoring could be further improved, leading to more 
accurate and comprehensive evaluations of cardiovascular health.

AI in cardiovascular health monitoring

Traditional cardiovascular health monitoring and treatment usually 
rely on regular physical examinations and doctors’ experienced diag-
nosis [126]. Nevertheless, considering the high costs and time invest-
ment associated with regular health screenings, many patients at risk 
experience delayed diagnoses. Additionally, the variability in doctors’ 
experience may result in differing diagnostic conclusions. AI technology, 
particularly machine learning and deep learning, offers powerful tools 
for enhancing cardiovascular health monitoring, particularly in medical 
data process and diagnostic support [127–130].

In traditional cardiovascular health monitoring, as shown in Fig. 9a, 
doctors first need to inquire about the patient’s identity information and 
record their medical history and symptoms, such as chest pain, 

Fig. 9. Comparison between traditional methods of cardiovascular health monitoring and disease diagnosis and diagnosis combined with ai technology. a) The 
traditional cardiovascular health monitoring process mainly includes patient visit, physical examination, diagnosis and treatment. b) The cardiovascular health 
monitoring process combined with AI mainly includes physiological signal acquisition, AI model establishment, and AI model assisted diagnosis and treatment.
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breathing difficulties, and palpitations. Then, during the physical ex-
amination, the doctor looks at the patient’s current physiologic function 
tests, body fluids, and imaging tests, such as measuring the patient’s BP, 
pulse, ECG, and ultrasonography, to determine if there are any signs of 
abnormality, such as atrial fibrillation or a heart murmur. Finally, the 
doctor will take appropriate diagnostic and therapeutic approaches, 
such as medication and surgery, based on the test results and existing 
experience[131]. These methods rely heavily on manual recordings and 
routine screening devices, which are inefficient for continuous moni-
toring and may delay early detection and treatment [132].

AI technology offers transformative solutions to these limitations by 
enhancing both the data processing capabilities and diagnostic accuracy 
of cardiovascular monitoring systems. For example, during the biosignal 
acquisition phase, AI can improve signal quality by applying advanced 
preprocessing techniques, such as denoising and artifact removal, to raw 
data obtained from wearable sensors. This is particularly valuable in 
technologies like pulse pressure monitoring and PPG, where signal ar-
tifacts due to motion or external light can compromise data validity. 
Moreover, AI algorithms can enhance ECG signal analysis by filtering 
out noise and accurately identifying cardiac events, even when signals 
are weak or noisy. In the case of BIA, AI-driven models can adjust for 
individual variations in body composition and hydration levels, leading 
to more consistent measurements. SCG/BCG and ultrasonography also 
benefit from AI’s ability to differentiate true cardiac signals from 
background noise, ensuring that mechanical and acoustic assessments 
are more reliable.

AI technology provides transformative solutions to the limitations of 
cardiovascular monitoring systems by enhancing data processing and 
diagnostic accuracy. In PPG and pulse pressure monitoring, AI can 
significantly improve signal quality by employing advanced pre-
processing techniques such as denoising, artifact removal, and adaptive 
filtering. These methods effectively address common issues like motion 
artifacts and external light interference, which often compromise data 
validity[133]. For ECG analysis, AI-driven algorithms utilize machine 
learning models to accurately identify cardiac events, such as arrhyth-
mias, even when signals are weak or obscured by noise. This is achieved 
through sophisticated noise filtering and pattern recognition techniques, 
which enhance the reliability of ECG diagnostics, especially in dynamic 
or ambulatory monitoring environments[62]. In BIA, AI algorithms ac-
count for variations in body composition, hydration, and other physio-
logical factors that can affect measurements. By dynamically adjusting 
the analysis models, AI ensures more consistent readings, which is 
critical for accurate assessments of body impedance. Similarly, in SCG 
and BCG, AI techniques differentiate true cardiac signals from back-
ground noise, such as body movements or environmental vibrations. 
Advanced feature extraction and classification algorithms improve the 
precision of these mechanical and acoustic assessments, making them 
more reliable even in less controlled settings. AI also plays a crucial role 
in ultrasonography by addressing the challenges associated with the 
high volume and complexity of image data. AI-powered image pro-
cessing algorithms enhance the resolution, segmentation, and overall 
clarity of ultrasound images, facilitating more precise visualization of 
cardiac structures and blood vessels. Furthermore, AI can automate the 
identification of key anatomical features, reducing dependence on 
operator experience and minimizing variability in image interpretation. 
This results in more consistent and accurate real-time imaging, which is 
essential for diagnosing blood flow-related conditions. Overall, AI 
significantly improves the performance and reliability of various car-
diovascular monitoring technologies by enhancing data quality, 
reducing noise, and automating complex diagnostic tasks.

AI-driven intelligent monitoring systems utilize wearable sensors for 
efficient data acquisition, including sampling, filtering, transmitting, 
processing, and storage, as shown in Fig. 9b [134]. AI techniques like 
decision trees, support vector machines, and neural networks automat-
ically identify disease patterns and provide accurate diagnoses and 
personalized treatment plans [135,136]. The ability to process and 

analyze massive amounts of data is key for identifying disease patterns 
and predicting risks [137]. Moreover, AI algorithms can accelerate the 
diagnostic process and improve decision-making accuracy, especially in 
the detection of subtle patterns that may indicate early signs of CVDs.

In the field of cardiovascular health monitoring, the application of 
intelligent wearable devices is becoming increasingly widespread, and 
its core relies on the integration and optimization of machine learning 
and deep learning algorithms. Machine learning algorithms, such as 
decision trees, support vector machines, and random forests, are widely 
used due to their effectiveness in processing small and feature specific 
datasets [135]. These algorithms are suitable for performing classifica-
tion tasks such as cardiovascular conditions, where decision trees 
analyze data by simulating decision paths, support vector machines 
construct hyperplanes in high-dimensional space to maximize inter class 
margins, and random forests improve prediction accuracy and reduce 
the risk of overfitting by constructing multiple decision trees. On the 
other hand, deep learning algorithms, especially convolutional neural 
networks, recurrent neural networks, and their variants of long 
short-term memory networks, are highly praised for their excellent 
performance in processing large-scale datasets and recognizing complex 
patterns[36]. These deep learning models are particularly suitable for 
analyzing complex biological signal data such as ECG[62]or PPG[133], 
which can identify abnormal patterns such as arrhythmia. Machine 
learning models perform well in small datasets that require clear deci-
sion logic, while deep learning models demonstrate their advantages in 
situations with large amounts of data, complex patterns, and the need 
for highly automated analysis[18]. Therefore, by integrating machine 
learning and deep learning, intelligent wearable devices continuously 
monitor cardiovascular health, adapting to individual variability in 
real-time, enhancing detection and providing actionable insights for 
personalized health management[138,139].

Nowadays, a variety of wearable cardiovascular monitoring devices 
have emerged, offering diverse functionalities for the prevention and 
prognosis of CVDs[138]. Compared to traditional methods, AI-equipped 
devices can process large datasets rapidly, providing timely health 
guidance [140]. Additionally, these devices excel in long-term tracking, 
offering new strategies for managing conditions like arrhythmias, atrial 
fibrillation, and hypertension. Through continuous data analysis, they 
can identify potential health risks, remind users to take preventive ac-
tions, and recommend personalized lifestyle adjustments. This technol-
ogy also enhances doctor-patient interaction, allowing remote access to 
real-time health data for more precise and timely care. In summary, the 
integration of wearable devices with AI technology marks a new era in 
cardiovascular health management, characterized by enhanced intelli-
gence, personalization, and connectivity.

Application of emerging wearable devices and ai enhancement 
for cardiovascular health monitoring

With the advancement of new materials, bionanotechnology, micro 
and nanofabrication processes, and the microelectronics industry, a 
range of high-performance, multi-functional wearable cardiovascular 
health monitoring devices have been developed. Utilizing advanced 
sensing mechanisms, these devices are capable of monitoring key in-
dicators such as heart rate and BP in real-time and providing a more 
comprehensive assessment of cardiovascular health through continuous 
data collection. Integration of AI technology further enhances these 
devices by enabling them to not only collect data, but also intelligently 
analyze this information to provide support in predicting cardiovascular 
events, personal health management, and paramedical decision-making. 
For example, through continuous monitoring and AI algorithms, these 
devices are able to recognize early signs of arrhythmia and notify users 
and healthcare providers in a timely manner, potentially preventing 
serious cardiovascular events from occurring. In addition, AI-enhanced 
cardiovascular health monitoring devices can provide personalized 
health advice based on an individual’s lifestyle and historical health 
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data. The development of these technologies shows great promise and 
potential for application both in the medical field and personal health 
maintenance.

Wearable devices based on pulse pressure sensors

In recent years, innovative approaches to flexible biomedical sensors 
have shown a surge of interest. Wearable pulse pressure sensors repre-
sent a rapidly evolving technology, distinguished by their ability to 
sensitively detect subtle mechanical signals, thereby establishing a 
dependable tool for the detection of human pulse pressure. Devices 
designed for the continuous, non-invasive monitoring of vital signs 
employ these pressure-sensitive sensors and benefit from their high 
sensitivity, stability, and conformability in detecting pulse pressure
[141–143]. Here, we select typical cases of several burgeoning forms of 
pulse pressure sensors to introduce their relevant applications in car-
diovascular status assessment. According to whether an external power 
supply is required, these sensors can be divided into active and passive 

types, among which active sensors include piezoresistive[144–146] and 
capacitive[147,148] types, while passive sensors include piezoelectric
[149], triboelectric[150,151], and magnetoelastic[152] types.

Liu et al. designed a BP and cardiac monitoring system using a 
flexible multi-channel pulse pressure sensor array with carbonized silk 
fabric and deep learning algorithms, achieving high sensitivity and real- 
time pulse monitoring, suitable for early CVDs diagnosis (Fig. 10a)
[146]. Building on similar principles, Pang et al. developed a flexible 
piezoresistive sensor with a PDMS and metal-coated polyurethane 
nanofiber structure, enhancing its ability to detect pressure, shear, and 
torsion, crucial for precise cardiovascular assessments[145]. Expanding 
on these advancements, Li et al. introduced a health monitoring system 
with a piezoresistive strain sensor array and deep learning algorithms 
that achieved an impressive BP prediction accuracy (<1 mmHg) by 
analyzing wrist pulse signals (Fig. 10b)[106]. Jia et al. further inte-
grated flexible pulse pressure sensors with deep learning-assisted signal 
enhancement in a skin-integrated system, offering reliable pulse signal 
monitoring for dynamic and static conditions, facilitating heart rate and 

Fig. 10. Wearable active pulse pressure sensors. a) Multi-channel flexible pulse sensing array for intelligent disease diagnosis system. (i) Schematic diagram of the 
intelligent disease diagnosis system based on flexible pressure sensors. (ii) Schematic diagram of machine learning for automatic pulse recognition. Reproduced 
according to the terms of the CC-BY Creative Commons Attribution 4.0 International license[146]. b) Piezoresistive pressure sensor for continuous monitoring of BP 
and heart function. (i) Schematic diagram of the pulse monitoring system. (ii) Schematic diagram of the deformation of the pressure sensor caused by the radial artery 
pulse and its working mechanism. (iii) Architecture of the deep learning model. Reproduced according to the terms of the CC-BY Creative Commons Attribution 4.0 
International license[106]. c) A deep learning-assisted skin-integrated pulse sensing system for reliable pulse monitoring and cardiac function assessment. (i) 
Schematic diagram of a multi-channel pulse array attached near the artery. (ii) Schematic diagram of an autoencoder model for signal enhancement. (iii) Schematic 
diagram of an inverse variance weighting algorithm for pulse signal reconstruction. Reproduced with permission[144], Copyright 2024, Elsevier Ltd.
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variability analysis (Fig. 10c)[144]. Additionally, Pang et al. advanced 
sensor design with a capacitive pulse pressure sensor featuring a bio-
mimetic structure, significantly improving sensitivity and reducing 
hysteresis, aimed at evaluating heart failure risk via jugular venous 
pulses[147].

Piezoelectric sensors are usually one of the common types of sensors 
used to detect pulse wave signals. They have good sensitivity and time 
resolution, and can detect and record subtle changes in pulse waveform. 
Tan et al. designed an AI-enhanced BP prediction wristband (BPPW) 
based on piezoelectric nanogenerators[149]. BPPW adopts a columnar 
array microstructure to improve the output performance of piezoelectric 
sensors, and combines supervised Transformer deep learning models to 
predict BP by combining collected pulse wave data with pre-established 
regression models. BPPW can achieve a high signal-to-noise ratio of 
29.7 dB and a BP prediction ability with an error of less than 4 mmHg. 
And it achieved three consecutive days of BP monitoring, proving that 
BPPW has the ability to monitor BP for a long time, which is of 

far-reaching significance for long-term cardiovascular health moni-
toring, as shown in Fig. 11a. Li et al. also introduced a thin, soft, mini-
aturized system (TSMS) for continuous arterial BP monitoring, which 
addresses the issues of bulkiness and poor user-device interface in 
existing technologies[153]. This system combines a piezoelectric sensor 
array with an active pressure adaptation unit and advanced machine 
learning, achieving Grade A measurement accuracy. The TSMS’s 
compact design and effective pressure control allow for accurate, 
real-time BP monitoring in a wearable format, enhancing both usability 
and performance.

Triboelectric sensors are widely used in cardiovascular health 
monitoring due to their high cost performance, wide selection of ma-
terials, and simple working principles. Ran et al. proposed a triboelectric 
sensor based on a new sandwich structure [150]. A sensitivity of 
0.89 V/kPa is achieved in the linear range of 0 ~ 35 kPa, so this tribo-
electric sensor can easily capture the pulse signal at the radial artery. In 
addition, a new method for estimating BP based on pulse waves 

Fig. 11. Wearable passive pulse pressure sensors. a) Piezoelectric pressure sensor for BP prediction. (i) The structure of BPPW and the materials used in each part. (ii) 
The structure and materials used of sensor in BPPW. (iii) The process of BPPW’s deep learning model establishment. (iv) The difference in time between two sensors 
at different locations. Reproduced according to the terms of the CC-BY Creative Commons Attribution 4.0 International license[149]. b) Triboelectric pressure sensor 
for BP prediction. (i) Schematic illustration of the double sandwich structure. (ii) Working principle of the triboelectric sensor. (iii) The flow of system frame diagram. 
Reproduced with permission, Copyright 2022, Springer Nature[150]. c) Magnetoelastic pressure sensor for health monitoring in humid environments. (i) The 
structure of a magnetoelastic generator. (ii) Schematic of the arterial pulse sensing mechanism of the magnetoelastic generator. (iii) Photograph showing a mag-
netoelastic generator worn on the wrist underwater. (iv) Comparison of the arterial pulse waveforms obtained from the magnetoelastic generator underwater and 
with sweat. (v) Key arterial parameters extracted from the fine structure of the pulse waveform obtained with artificial perspiration. Reproduced with permission
[152], Copyright 2022, Springer Nature.
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combined with user background information is proposed. This method 
only measures a set of pulse wave signals, and then based on the deep 
learning model of a multi-network structure, it can predict systolic BP 
and diastolic BP, promoting the development of wearable devices for 
continuous and portable BP prediction, as shown in Fig. 11b. Yao et al. 
also developed a novel wearable system for BP monitoring, which 
combines a bionic nanocolumn layer-based triboelectric pulse sensor 
with personalized machine learning (PLSR)[151]. The innovation lies in 
the sensor’s design, inspired by cicada wing structures, which enhances 
the detection sensitivity of pulse waveforms. By integrating this sensor 
with PLSR, the system can accurately tailor BP predictions to individual 
physiological differences, offering an improvement over standard 
methods that often struggle with individual variability.

Since the discovery of the giant magnetoelastic effect in soft systems 
in 2021, magnetoelastic sensors have become a key technology for 
wearable devices due to their small size, excellent waterproofness, and 
biocompatibility. Zhou et al. invented a soft magnetic elastic sensor as a 
pulse pressure sensor, whose elastic modulus can be similar to human 
skin and tissue[152]. Since the magnetic field can penetrate water, the 
magnetoelastic sensor can be worn on the wrist to continuously and 
stably provide real-time health data even when sweating or spraying 
artificial sweat. It can be used for human cardiovascular health moni-
toring and disease diagnosis, as shown in Fig. 11c.

Wearable devices based on PPG sensors

The relentless progress of photoelectric technology has considerably 
broadened the utilization of PPG in the medical field. PPG waveforms 
offer multifaceted insights into cardiovascular health, encompassing 
heart rate, pulse, blood oxygen saturation, and BP. Furthermore, they 
possess the potential for assessing conditions associated with cardiac 
output, blood volume, arteriosclerotic or stenotic alterations, and hy-
pertension, showing broad application prospects in the fields of car-
diovascular health monitoring.

In the neonatal intensive care unit, continuous vital sign monitoring 
is essential, however, existing invasive, wired monitoring methods may 
bring risks of skin damage and infection to newborns. Chung et al. 
developed a wireless, battery-free vital sign monitoring system that can 
reconstruct full vital sign information with clinical-level accuracy[154]. 
The device is mounted on the sole of the foot and records the PPG 
simultaneously by recording reflected light. The sensor is fully encap-
sulated from the top, bottom and sides with silicone elastomer, allowing 
it to function even when completely submerged in water. Tests were 
conducted on newborns with gestational ages ranging from 28 weeks to 
1 month, and SpO2 was successfully measured using the sensor during 
rest and breath-holding periods, as shown in Fig. 12a.

Polat et al. demonstrated a new flexible and transparent wearable 
device based on graphene and semiconductor quantum dot sensitization
[49]. The flexible graphene photodetectors demonstrated in this study 
have excellent photoresponsivity properties; these detectors achieve 

Fig. 12. Wearable PPG sensors. a) PPG sensors for newborn health monitoring. (i) Images and finite-element modeling results for PPG devices bent. (ii) Device for 
capturing PPG data during operation in a lighted and a dark room. (iii) Convention for calculating direct and alternating components of PPG waveforms collected in 
the red and IR. (iv) The change in SpO2 detected by the sensor after holding breath. Reproduced according to the terms of the CC-BY Creative Commons Attribution 
4.0 International license[154]. b) A novel flexible and transparent wearable device based on graphene and semiconductor quantum dot sensitization. (i) Schematic of 
PPG in reflectance mode. (ii) HR monitoring bracelet based on reflection mode PPG to extract vital signs from wrist. (iii) Schematic illustration of the assembly of 
graphene and QDs on a flexible substrate. (iv) Photograph of macroscale PD on the PET substrate. (v) Scale bar, 5 mm. Normalized PPG readings for transmission and 
reflectance modes of operation. Reproduced according to the terms of the CC-BY Creative Commons Attribution 4.0 International license[49]. c) PPG sensors 
combined with DCNN to improve PPG quality. (i) Schematic of PPG in reflectance mode. (ii) DCNN algorithm network architecture. (iii) Accuracy and loss profile for 
training and validation in the model. Reproduced according to the terms of the CC-BY Creative Commons Attribution 4.0 International license[155].
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broad-band sensitivity from 300 to 2000 nm by combining semi-
conductor quantum dots, and their responsivity can reach levels as high 
as 105 A/W. These properties are made possible by the photoconductor 
gain in the design, which allows for the separation of bulky readout 
electronics from the sensor while maintaining the transparency and 
shape of the sensing area. In addition, these flexible graphene detectors 
show extremely low power consumption and can operate without the 
need for an external light source, using ambient light for health moni-
toring. These key performance parameters make this new sensor 
particularly promising in the field of wearable cardiovascular health 
monitoring, enabling effective monitoring of a wide range of vital signs, 
such as heart rate, oxygen saturation, and respiration rate, as well as 
battery-free operation of the device and wireless transmission of data, 
opening up new possibilities for future health tracking devices, as shown 
in Fig. 12b.

The higher the quality of the PPG signal, the higher the accuracy of 
the measurement parameters extracted from it. However, PPG signals 
are susceptible to motion artifacts and baseline drift during the 
recording process, so Liu et al. used AI technology to assist in classifying 
the signal quality of PPG[155]. They used two-dimensional deep con-
volutional neural networks(DCNN) to classify PPG signal quality, and 
achieved a maximum accuracy of 92.5 % even for those PPG signals 
severely damaged by motion artifacts and power line interference. This 
shows that the support of AI technology can help solve the PPG signal 
quality classification problem faced in the development of wearable 
devices and promote the application and development of wearable de-
vices in cardiovascular health monitoring, as shown in Fig. 12c. The 

higher the quality of the PPG signal, the higher the accuracy of the 
measured parameters extracted from it. However, since PPG signals are 
susceptible to motion artifacts and baseline drift during recording, signal 
quality classification becomes critical. Moscato et al. developed two 
classifiers to identify PPG pulses suitable for heart rate estimation and 
morphological analysis, achieving the highest performances (accuracies: 
96 % and 97 %) using support vector machines, which were superior to 
existing methods[156]. Automated signal quality assessment methods 
are essential to improve the reliability of PPG parameters. In addition, 
Wang et al. evaluated the accuracy and long-term performance of an 
upper arm cuffless PPG sphygmomanometer using a nonlinear machine 
learning model architecture and a fine-tuned optimization method
[157]. Results showed better signal quality in the upper arm compared 
to wrist measurements, and the device remained consistently accurate 
during initial calibration and one-month follow-up. The device does not 
require frequent calibration, demonstrating its feasibility in long-term 
continuous BP monitoring and further demonstrating the application 
of AI techniques in PPG signal quality classification.

Wearable devices based on ECG sensors

With advances in microelectronics and the use of high-performance 
materials, modern ECG sensors have evolved into more compact and 
sensitive devices that seamlessly integrate with wearable technology to 
provide continuous ECG monitoring around the clock. These devices are 
not only small in size, but also highly flexible and malleable, allowing 
them to fit snugly against the skin and reducing discomfort while 

Fig. 13. Wearable ECG sensors. a) A ECG sensor for neonatal health monitoring. (i) Diagram showing the configuration of wireless devices for newborns. (ii) Images 
and finite-element modeling results for ECG devices bent. (iii) Image of an ECG epidermal electronic system(EES) stretched uniaxially in the horizontal. (iv) ECG 
signals acquired simultaneously from an ECG EES and a gold standard, with detected peaks. Reproduced according to the terms of the CC-BY Creative Commons 
Attribution 4.0 International license[154]. b) a self supervised learning classification method for detecting and recognizing ECG diagnostic terms. (i) Wearable ECG 
device and its standard attachment method. (ii) Ablation study of three strategies. (iii) The architecture of multiscale convolutional network. (iv) Precision-recall 
curves. (v) Frequency distribution histogram of unannotated ECGs and annotated ECGs on relative average power. Reproduced according to the terms of the 
CC-BY Creative Commons Attribution 4.0 International license[158]. c) a novel flexible and transparent wearable device based on graphene and semiconductor 
quantum dot sensitization. (i) Overview of the system with sensors wirelessly communicating values to the display. Reproduced with permission[159], Copyright 
2018, Springer Nature.
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maintaining signal accuracy and reliability. The integration of AI further 
enhances the functionality of these ECG devices, allowing them to not 
only capture ECG signals, but also analyze the data in real-time through 
sophisticated algorithms to automatically identify abnormal activities 
such as arrhythmia, tachycardia or bradycardia. Additionally, AI tech-
nologies can learn from large amounts of accumulated data to improve 
the accuracy of predicting cardiac events, thus providing critical early 
warnings in emergency situations. Taken together, these technological 
developments have not only improved the ease and comfort of use of 
ECG devices, but have also enhanced the real-time and predictive nature 
of cardiovascular health monitoring, bringing significant health man-
agement benefits to both providers and patients.

In the process of continuous vital sign monitoring of newborns, 
Chung et al. demonstrated a wireless and battery-free ECG monitoring 
system that can collect physiological signals with clinical-level accuracy
[154]. The system features high mechanical compliance and a 
non-invasive skin-adhesive interface, and is well compatible with 
traditional ECG examinations. By eliminating wired connections, the 
system promotes therapeutic skin-to-skin contact between newborns 
and parents, stabilizing vital signs. In addition, the system also has 
functions such as multi-point temperature sensing and BP tracking, 
which can provide more dimensions of cardiovascular health-related 
information, as shown in Fig. 13a.

AI plays an increasingly important role in intelligent diagnosis of 
ECG, and the improvement of diagnostic accuracy depends on the input 
of large amounts of data. Lai et al. used a wearable 12-lead ECG 
collection device to collect ECG data from 658,486 test subjects[158]. 

About 25 % of the data is labeled, and the remaining 75 % is undiag-
nosed data. They use self-supervised learning to mine the information 
contained in large amounts of ECGs and transfer the learned knowledge 
to classification tasks to improve generalization capabilities. Imple-
mented a self-supervised learning classification method that can detect 
and identify 60 ECG diagnostic terms, including sinus rhythm, 
arrhythmia, and heartbeat waveform changes, as shown in Fig. 13b.

In the ECG acquisition process, the quality of the electrodes often 
determines the quality of the signal. During the collection process, slight 
movement or shaking of the body is inevitable, so the stretchability and 
self-healing ability of the electrode are very important. Son et al. pro-
posed a dynamically reconfigurable conductive nanonetwork[159]. The 
fractured part of the nanoconductive network encapsulated in a 
self-healing polymer matrix can autonomously heal with the dynamic 
reconstruction of the self-healing polymer. This autonomous healing 
enables the nanoconductive network to not only restore its high con-
ductivity, but also restore its mechanical properties. In self-healing 
airborne systems, utilizing the self adhesive properties of self-healing 
polymers, ECG sensors and other components can be seamlessly inte-
grated into one platform to achieve detection of ECG signals. In addition, 
the physiological data recorded by each sensor can be wirelessly trans-
mitted to the light-emitting capacitor array to provide real-time 
continuous monitoring. This makes it possible to manufacture various 
stretchable and self-healing wearable devices for cardiovascular health 
monitoring, as shown in Fig. 13c. Furthermore, Chen et al. developed an 
automatic atrial fibrillation detection method tailored for wearable de-
vices, employing deep learning techniques[160]. The approach involves 

Fig. 14. Wearable BIA sensors. a) A wearable BP monitoring platform based on graphene electronic tattoos. (i) Close-up view of six graphene electronic tattoos 
(GETs) and simplified equivalent circuit of a pair of sensing GETs interface. (ii) Three-dimensional schematic diagram of GETs placed in the radial artery of the 
subject’s wrist. (iii) Photograph of 12 GETs placed in the radial and ulnar arteries of the subject’s wrist. (iv) Illustration of the peripheral arterial BP pulse waveform 
and correlated arterial volume. (v) The BIA signal is reciprocal to the BP pulse waveform. Reproduced with permission [162], Copyright 2018, Springer Nature. b) 
Monitoring different parts of the human body to obtain multiple cardiovascular parameters. (i) Schematic diagram of bioimpedance modality testing. (ii), (iv) 
Electrodes placed on the radial artery (left) and ulnar artery (right). (iii) Transverse section of the wrist showing the location of the radial and ulnar arteries. (v) Real 
and imaginary total high-frequency bioimpedance signals obtained from the radial and ulnar arteries. Reproduced according to the terms of the CC-BY Creative 
Commons Attribution 4.0 International license[163].
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novel preprocessing steps, including wavelet transform and sliding 
window filtering, to reduce noise and outliers in ECG signals. A robust 
R-wave detection algorithm was implemented, achieving a detection 
sensitivity of 99.22 % and a positive recognition rate of 98.55 % on the 
MIT-BIH arrhythmia database. The proposed feedforward neural 
network for atrial fibrillation detection demonstrated an accuracy of 
84.00 %, a sensitivity of 84.26 %, and a specificity of 93.23 % on a 
mixed dataset from the Challenge2017 and MIT-BIH databases. These 
results underscore the potential of this method for early atrial fibrilla-
tion prediction in wearable applications. ECG is also a key tool for the 
diagnosis of myocardial infarction, but the application of deep learning 
methods is limited by privacy issues and insufficient data, especially the 
lack of support for single-lead ECG data. To solve this problem, Li et al. 
proposed the SLC-GAN model, which synthesizes single-lead ECG data 
with high morphological similarity by generative adversarial network 
and combines it with convolutional neural network to automatically 
detect myocardial infarction, and the experiments show that this 
method can classify myocardial infarction on single-lead ECG with an 
accuracy of 99.06 %[161].

Wearable devices based on BIA sensors

Technological advances in BIA have focused on improving mea-
surement accuracy and portability to meet the growing demand for 
home health monitoring and telemedicine. By integrating advanced 

sensors and microprocessors, the latest BIA devices are able to more 
accurately measure and analyze the body’s water and electrolyte bal-
ance, which is particularly critical for assessing cardiovascular health. 
For example, modern BIA devices are able to take measurements at 
different frequencies to discern the distribution of fluids inside and 
outside of cells, which helps to provide a more nuanced understanding 
of the load on the cardiovascular system. Additionally, these devices are 
often equipped with wireless transmission capabilities, enabling real- 
time data transfer to a smartphone or healthcare app to support 
ongoing health tracking and data analysis. This wireless capability 
makes BIA technology particularly important in the field of continuous 
cardiovascular monitoring, as it allows physicians to remotely monitor a 
patient’s hydration status and cardiovascular health and make timely 
adjustments to treatment plans. Recent applied research has shown that 
BIA devices not only assess body composition, but can also be used to 
monitor circulation and cardiac health indicators such as cardiac output 
and cardiovascular reactivity. The monitoring of these indicators can 
help predict the risk of CVDs and provide important information in daily 
health management. Through the integration and application of these 
technologies, BIA has become a versatile diagnostic tool that can be used 
in a wide range of clinical and home settings.

Kireev et al. reported a BIA-based wearable continuous BP moni-
toring platform that utilizes graphene electronic tattoos as a bio-
electronic interface[162]. Due to the self-adhesive and low impedance 
characteristics of graphene electronic tattoos, even with time and body 

Fig. 15. Wearable SCG/BCG sensors. a) A mechanical acoustic electrophysiological sensing platform is used to record mechanical sounds from the body. (i) Exploded 
view of the overall structure. (ii) Schematic diagram of the assembled device. (iii) Image of an epidermal device mounted on the chest. (iv) Simultaneous mea-
surement of ECG and heart sound signals. (v) ECG and heart sound signals in enlarged view. Reproduced according to the terms of the CC-BY Creative Commons 
Attribution 4.0 International license[166]. b) A wireless, real-time, continuous wearable auscultation system for heart and lung diagnosis. (i) Photo of the SWS 
mounted on the chest for heart sound detection. (ii) Enlarged photo of the device on the fingers and chest. (iii) Time-series plot of the 5-s window heart sounds, 
measured from a healthy subject. (iv) Spectrogram of the time series graph. (v) Schematic illustration of the flow for automated, objective diagnosis of diseases via 
machine learning in the SWS. Reproduced according to the terms of the CC-BY Creative Commons Attribution 4.0 International license[167]. c) A novel fabric for 
detecting cardiac mechanical sounds. (i) Schematic of preform-to-fiber thermal drawing and fiber poling. (ii) Photos of fiber winding and bending. (iii) Practical 
application of the fabric stethoscope. (iv) Signal diagram of the measured heart rate and heart sounds. Reproduced with permission[168], Copyright 2022, 
Springer Nature.
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movement, the electronic tattoos are always in the same position on the 
skin. Therefore, the evaluation model is determined from the beginning. 
There is no need to repeatedly recalibrate the model with electrode 
misalignment or sensor movement like other wearable electrode types. 
Graphene electronic tattoos can be used to monitor arterial BP for over 
300 minutes, achieving continuous non-invasive high-precision 
recording of BP. The accuracy of diastolic BP is 0.2 ± 4.5 mm Hg, and 
the accuracy of systolic BP is 0.2 ± 5.8 mm Hg, as shown in Fig. 14a.

Due to the lack of specific detection locations, BIA can detect various 
parts of the body. Sel et al. conducted a comprehensive analysis of 
different arteries (ulnar artery, radial artery, tibial artery, and carotid 
artery) and chest (intercostal fusion cage and thoracolumbar fascia)
[163]. Overall, the average errors in estimating the heartbeat interval 
and breathing interval are as low as 0.003 ± 0.002 and 0.67 ±
0.28 seconds, respectively. The results indicate that BIA can be effec-
tively used to monitor important cardiovascular parameters in multiple 
parts of the human body, including blood flow, lung movement, muscle 
contraction, and fluid movement, as shown in Fig. 14b. Chiu et al. 
applied an artificial neural network to estimate total body water in he-
modialysis patients, improving upon traditional anthropometric 
methods[164]. The approach closely matched multifrequency bioelec-
trical impedance analysis results, highlighting AI’s potential to enhance 
precision in patient monitoring. Similarly, Nana et al. utilized 
two-dimensional smartphone images for body composition analysis, 
comparing it with traditional methods in 929 adults[165]. Their 
AI-based technique demonstrated strong agreement with dual-energy 
X-ray absorptiometry and outperformed bioelectrical impedance anal-
ysis, underscoring the role of AI in providing accessible, accurate as-
sessments for cardiovascular health monitoring through wearable and 
mobile technologies.

Wearable devices based on SCG/BCG sensors

The technological advancements in SCG and BCG sensors are mainly 
characterized by their improved sensitivity and signal processing ca-
pabilities, as well as enhanced user portability and wearing comfort. 
These devices are fabricated through microelectromechanical system 
technology, enabling them to accurately capture the minute mechanical 
vibrations caused by cardiac activity. The integration of SCG and BCG 
devices allows them to be seamlessly embedded into wearables and 
everyday items, such as smartwatches and health-monitoring bracelets, 
to enable continuous monitoring of cardiac mechanical activity. In 
cardiovascular health monitoring, SCG and BCG devices effectively 
monitor heart pumping efficiency and cardiac pathology, providing 
critical data for early diagnosis and treatment of heart disease. When 
used in conjunction with ECG, these devices provide a more compre-
hensive assessment of cardiovascular health. Next-generation acoustic 
sensors are increasingly using AI algorithms to improve the accuracy of 
data analysis, helping to identify abnormal rhythms and potential car-
diovascular problems in real-time, enabling early intervention. The 
integration of this technology extends the promise of SCG and BCG for 
CVDs monitoring.

The mechanical sound electrophysiological sensing platform devel-
oped by Liu et al. utilizes the latest in stretchable electronics to achieve 
soft, well-compliant integration with the skin[166]. Designed for me-
chanical sound recordings from virtually any part of the skin, this 
platform’s features include a low effective modulus and low area mass 
density, which are key to operating effectively in this measurement 
mode. The device is only 2 mm thick and has very low bending stiffness, 
allowing it to fit almost seamlessly into any area of the body, including 
the curved portion of the neck, to capture signals related to breathing, 
swallowing, and vocalization. The platform has shown its utility in a 
number of applications, including cardiovascular diagnostics and 
human-machine interfaces. For example, in cardiac patients, it suc-
cessfully recorded heart murmurs and vibratory sounds of 
blood-pumping machinery, demonstrating its utility in clinical 

diagnostics. In addition, the device can monitor pumping machinery 
malfunctions in ventricular assist devices and detect thrombosis or drive 
failures in pumping machinery by capturing the vibro-acoustic signature 
of these devices, which is particularly important in cardiac therapeutic 
device monitoring. This wearable acoustic sensing platform provides a 
new and efficient means of cardiovascular health monitoring through its 
highly integrated sensor and circuit design and its ability to record 
multiple physiological signals simultaneously, as shown in Fig. 15a.

The study by Lee et al. describes a soft wearable stethoscope system 
that accurately performs cardiopulmonary auscultation during daily 
activities by utilizing electronic and flexible mechanical technologies
[167]. This system significantly optimizes the bulky size and friction 
noise issues associated with conventional and digital stethoscopes for 
continuous monitoring. The soft wearable stethoscope (SWS) device 
uses a microelectromechanical system of microphones and advanced 
signal processing to improve signal-to-noise ratios, achieves close con-
tact with the skin through a soft material design, and reduces noise 
interference caused by motion. In addition, the wearable stethoscope 
system has a built-in machine learning model that automatically di-
agnoses lung diseases including lung crackles, wheezing, tension and 
breathing sounds with up to 95 % diagnostic accuracy. Its mobile device 
app tracks and displays signals in real-time, automatically diagnoses a 
wide range of abnormal lung sounds, and securely uploads the infor-
mation to local storage. This new stethoscope shows promising appli-
cations for early detection and continuous monitoring of 
cardiopulmonary diseases due to its portability, high sound quality 
recording capability and potential for automated disease diagnosis, as 
shown in Fig. 15b.

Yan et al. invented a fabric that retains the machine washing and 
drape properties of traditional fabrics while also serving as a sensitive 
microphone for detecting cardiac mechanical sounds[168]. Due to its 
high sensitivity to vibration and impedance matching with the skin, this 
fabric can be used for cardiac auscultation and as a basic tool for diag-
nosing CVDs. A subject wearing an acoustic shirt made of this fabric can 
clearly detect high-quality heart sounds, including strong S1 and weak 
S2, with a signal-to-noise ratio of up to 30 dB. It functions as a skin 
interface stethoscope, providing a long-term and comfortable solution 
for real-time monitoring of heart and respiratory conditions, and sub-
sequently diagnosing cardiovascular health, as shown in Fig. 15c. 
Shandhi et al. applied machine learning to wearable SCG signals to es-
timate pulmonary pressures in heart failure patients, aiming to address 
the variability in traditional methods[169]. They used 500 ms SCG 
segments around ECG R-peaks to represent systolic and diastolic phases, 
simplifying feature extraction and avoiding the challenges of identifying 
valve opening and closing points, which are often inconsistent across 
individuals. By employing ensemble averaging and general feature 
extraction, their method effectively estimated pressure changes with 
high accuracy, showcasing the potential of AI-driven wearable tech-
nology for reliable, non-invasive monitoring of heart failure patients.

Wearable devices based on ultrasonography sensors

With advances in transducer technology, a new generation of ultra-
sound devices has achieved greater flexibility, miniaturization, and 
arraying, enabling more accurate deep tissue monitoring of the cardio-
vascular system. The core technologies of these ultrasound devices 
include highly sensitive miniaturized transducers and highly integrated 
electronic systems, enabling the devices to provide not only real-time 
hemodynamic data, but also more in-depth physiological and patho-
logical analyses through advanced image and signal processing algo-
rithms. For example, flexible ultrasound devices can fit snugly against 
the skin and transmit data in real-time via wireless technology, which is 
particularly important in monitoring heart health over time and pre-
dicting CVDs. In terms of applications, these devices are able to provide 
predictive information on all-cause CVDs mortality by continuously 
monitoring BP waveforms in blood vessels, which is clinically valuable 

Y. Wang et al.                                                                                                                                                                                                                                   Nano Today 59 (2024) 102544 

18 



for early diagnosis and intervention in CVDs.
The study by Wang et al. reports an innovative stretchable ultra-

sound device whose main feature is the ability to perform noninvasive, 
continuous and accurate monitoring of BP waveforms in deeply buried 
arteries and veins of the neck[96]. The advantages of this device over 
conventional methods are its stretchability (up to 60 % strain) and 
thinness (240 μm thick), which allows it to fit snugly into the skin and 
work effectively even in deep tissues. The device is made of a 1–3 
piezoelectric composite material and has an operating frequency of 
7.5 MHz and an axial resolution of 400 μm, performance indicators that 
guarantee its efficiency and precision in monitoring cardiovascular 
events. With this technology, cardiovascular activity can be captured 
from multiple body locations, significantly enhancing the potential for 
applications in clinical settings, as shown in Fig. 16a.

Continuous imaging of cardiac function is essential for evaluating 
long-term cardiovascular health. However, traditional equipment 
cannot maintain continuous and long-term testing due to its large size. 
Hu et al. reported a wearable ultrasound imager for continuous, real- 

time cardiac function assessment[95]. This device improves the me-
chanical coupling between the device and the human skin, allowing the 
left ventricle to be examined from different angles during movement. 
Even if the subjects are engaged in high-intensity exercise, uninter-
rupted frame by frame heart image acquisition can still be performed. In 
addition, the wearable ultrasound imager also integrates a deep learning 
model, which can automatically extract left ventricular volume from 
continuous image records, and obtain waveforms of key cardiac per-
formance indicators such as stroke output, cardiac output, and ejection 
fraction. This technology enables dynamic wearable monitoring of car-
diac performance in various environments and has potential application 
value in areas such as intensive care and CVDs management, as shown in 
Fig. 16b.

A flexible continuous-wave Doppler ultrasound device developed by 
Wang et al. enables real-time continuous monitoring of blood flow ve-
locity by means of a transducer array made of 1–3 piezoelectric com-
posite material[94]. The device utilizes a dual-beam Doppler method 
that effectively avoids the effects of Doppler angle and accurately 

Fig. 16. Wearable ultrasonic sensors. a) Stretchable ultrasound device for monitoring neck BP. (i) Schematic diagram of the stretchable ultrasound device. (ii) A 
typical pulse waveform measured from the carotid artery. (iii) BP measurement from the central artery to the peripheral artery. Reproduced with permission[96], 
Copyright 2018, Springer Nature. b) Wearable ultrasound imager for continuous and real-time cardiac function evaluation. (i) Exploded view of the wearable 
imaging device. (ii) Schematic diagram of the heart anatomy. (iii) Ultrasound images from wearable and commercial imagers. Reproduced according to the terms of 
the CC-BY Creative Commons Attribution 4.0 International license[95]. c) Flexible ultrasound device for real-time and continuous monitoring of absolute blood flow 
velocity. (i) Schematic diagram of a Doppler ultrasound device. (ii) Optical image of the device bending around a curved surface. (iii) Schematic diagram of a 
measuring device and a Doppler spectrum of the brachial artery. Reproduced according to the terms of the CC-BY Creative Commons Attribution 4.0 International 
license[94].
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measures blood flow velocity without calibration. The device’s flexible 
and lightweight design allows it to fit snugly against the skin for 
improved comfort. Compared to conventional ultrasound devices, the 
device is easy to operate and does not require an experienced operator. It 
operates at a frequency of 5 MHz and has a detection depth of up to 
25 mm, which meets the need for deep vascular monitoring. The device 
confirms its excellent blood flow velocity monitoring capability, 
showing promise for a wide range of applications in clinical and home 
health monitoring, as shown in Fig. 16c.

Advancements in AI have increasingly impacted ultrasound imaging 
research, particularly in enhancing diagnostic capabilities. Yan et al. 
demonstrated a trans-thoracic ultrasound localization microscope for 
imaging myocardial microvascular systems and hemodynamics[170]. 
This method overcomes challenges in visualizing small, moving micro-
vessels in the heart by utilizing gas-filled microbubbles to achieve 
super-resolution imaging. The technique effectively captures detailed 
images of myocardial blood flow and vascular structures, even during 
breath-holding in patients with impaired myocardial function, offering a 
promising non-invasive tool for advanced cardiovascular imaging. Xiao 
et al. introduced a novel deep learning approach for tracking arterial 
wall displacement from ultrasound radiofrequency signals, addressing 
the need for early monitoring of arterial mechanics related to CVDs

[171]. This deep learning-based method demonstrates higher accuracy 
in tracking arterial wall motion compared to traditional methods, as 
shown by carotid artery simulation and experimental data. Unlike 
conventional speckle tracking, which analyzes current data in isolation, 
this deep learning technique leverages both amplitude and phase in-
formation from radiofrequency signals, enhancing its capability to 
quantify vascular biomechanics and predict early cardiovascular 
pathology.

Comparison of materials, performance and application of emerging in 
intelligent wearable devices

In wearable devices, the choice of materials directly affects their 
performance and application scenarios. Here we have made a detailed 
summary of the sensing material, electrode material, structural material, 
form, performance, detection area and practical application of various 
wearable devices, as shown in Table 2. For pulse pressure sensors, the 
sensitivity and responsiveness to pressure are mainly concerned. 
Therefore, sensing materials with high pressure responsiveness are 
sought, such as piezoelectric materials with high electromechanical 
coupling coefficient and triboelectric materials with high electron af-
finity[172]. These materials are very suitable for monitoring weak pulse 

Table 2 
Comparison of wearable device materials, performance and applications.

Principle Sensing Material/ 
Components

Electrode 
Material

Structural 
Material

Form Key Indicators Detection 
Area

Application References

Active pulse pressure 
sensors

Polyurethane-based 
nanofibers

Pt PDMS Patch Sensitivity 
GF~11.45

Radial 
artery

Heartbeat 
monitoring

[145]

Carbonized silk 
georgette

nickel fabric Ecoflex Patch Sensitivity 
GF~9.81

Radial 
artery

BP and heart 
function parameter 
monitoring

[106]

PEN Cr/Au PVA Patch Sensitivity 
0.55–0.58 kPa− 1

Radial 
artery/ 
Carotid 
artery

deep-lying internal 
jugular venous 
pulses monitoring

[147]

Passive pulse pressure 
sensors

PVDF Ag PTFE Wristband Signal-to-noise 
ratio of 29.7 dB

Radial 
artery

BP monitoring [149]

Cardboard/Silicone 
rubber

Cu insulating 
fabric

Wristband Sensitivity 
0.89 V/ kPa

Radial 
artery

BP monitoring [150]

Magnetic induction/ 
giant magneto 
mechanical coupling

Cu - Wristband Sensitivity 10− 8 

T/ Pa
Radial 
artery/ 
Brachial 
artery

Wearable/ 
implantable device 
power supply/pulse 
monitoring

[152]

Photoplethysmography Red/IR LED 
Photodetector

Cu silicone 
elastomer/ 
PDMS

Patch Single-axis 
elongation 13 %

Sole of foot Heart rate/blood 
oxygen monitoring

[154]

Graphene sensitized 
with semiconducting 
quantum dots

Ti/Au PEN Patch Responsivity 105 

A/W
Fingertips/ 
Arms

Heart rate/blood 
oxygen monitoring/ 
ultraviolet 
detection

[49]

Electrocardiogram Ionic liquid and silica 
gel

Cu silicone 
elastomer/ 
PDMS

Patch Single-axis 
elongation 16 %

Chest Pulse arrival time 
monitoring

[154]

PDMS–MPU0.4–IU0.6 AgNW - Patch Strain 50 % Arms Continuous wireless 
monitoring of heart 
condition

[159]

Bioimpedance Analysis Graphene Graphene - Tattoo Accuracy 1 mΩ Arms/ 
Neck/Legs

Continuous cuffless 
monitoring of 
arterial BP

[162]

Seismocardiography/ 
Ballistocardiography

Accelerometer Cu PI/Ecoflex Patch Bending 
stiffnesses 0.94 
Мn⋅m (in the y 
direction)

Chest/ 
Neck/Arms

Cardiac valvular 
stenosis monitoring

[166]

MEMS mic Cu Silicone 
elastomer

Patch Signal-to-noise 
ratio of 14.8 dB

Chest Cardiopulmonary 
monitoring

[167]

Ultrasonography Lead zirconate titanate Cu/Sn PI Patch Piezoelectricity 
k33 up to 0.81

Neck Monitoring of the 
central BP

[96]

1–3 piezoelectric 
composite

gallium–indium 
liquid metal

SEBS Patch Centre resonant 
frequency of 
3 MHz

Chest Continuous imaging 
of cardiac functions

[95]

Abbreviations: Polydimethylsiloxane (PDMS), Polyvinyl alcohol (PVA), Polytetrafluoroethylene (PTFE), Polyethylene naphthalate (PEN), 4,4’-methylenebis(phenyl 
urea) unit (MPU), Isophorone bisurea unit (IU), Silver nanowires (AgNW), Carbon nanotubes (CNTs), Polyimide (PI), Styrene ethylene butylene styrene (SEBS).
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signals because of their high sensitivity and response speed. PPG sensors 
pay more attention to light responsiveness, so the sensing material 
emphasizes photoelectric conversion efficiency. For example, graphene 
sensitized with semiconducting quantum dots is used to capture the 
weak light change signal in blood oxygen monitoring. ECG sensors focus 
on biocompatibility and signal stability, and usually select sensing and 
electrode materials with high conductivity and extensibility, such as 
ionic liquids and silver nanowires, combined with silicone rubber 
encapsulation, to ensure long-term stable ECG signal monitoring. The 
key to the design of BIA sensors is high conductivity and skin adhesion. 
The electrodes made of graphene materials not only have excellent 
conductivity, but also can be in close contact with the skin to achieve 
high-precision bioimpedance measurement, suitable for arterial BP 
monitoring, and can be applied to the arms, neck, and legs in the form of 
electronic tattoo. SCG and BCG sensors emphasize sensitivity and 
miniaturization, using accelerometers and MEMS microphones, com-
bined with PI and silicone rubber encapsulation, making them suitable 
for heart valve stenosis and cardiopulmonary function monitoring in 
patch form on chest. Ultrasonography sensors rely on high piezoelectric 
coefficients and frequency response, and are usually made of PZT 
piezoelectric composite materials to achieve high-precision continuous 
imaging of central BP and cardiac function. Most of wearable devices are 
in the form of patches, which can be comfortably attached to the skin 
and are suitable for a variety of monitoring sites, such as the wrist, arm, 
chest, neck and leg. By selecting and optimizing different materials 
combination, the performance and applicability of various sensors have 
been significantly improved, promoting the widespread use of wearable 
devices in the field of cardiovascular health monitoring.

With the development of smart wearable devices, traditional mate-
rial design faces many challenges, such as the difficulty of predicting 
material properties and long design cycles. In the latest developments, 
AI can play a significant role in the initial design of sensors, such as by 
guiding the microstructure design of sensing materials to achieve per-
formance optimization[173–177]. Traditional material design methods 
often rely on trial and error and simulation, which is time-consuming 
and resource intensive[178,179]. The introduction of AI technology 
can greatly improve design efficiency. For example, a key challenge in 
the design of flexible pulse pressure sensors is to achieve a linear 
response over a wide pressure range. AI can be used to generate material 
structures that meet the target characteristics through data-driven 
reverse design methods, thereby achieving better performance on a 
variety of materials[180]. By combining the advantages of AI technol-
ogy and material science, future smart wearable devices will achieve 
further breakthroughs in performance and application range. The 
introduction of AI not only solves bottlenecks in existing technologies, 
but also opens up new directions for new materials and sensor designs, 
promoting the intelligent development of cardiovascular health 
monitoring.

Conclusion and outlook

In this review, we focus on discussing six major CVDs indicator sig-
nals and their detection methods and show examples of applications 
where AI has been combined with these technologies. In the future, 
intelligent wearable devices designed for cardiovascular health moni-
toring will be more integrated, systematic, smarter, and functionally 
diverse. They may employ electronic skin, electronic textiles, and other 
mediums as carriers, forming a body area network of signals and energy 
in conjunction with commonly used wearable devices such as wrist-
bands. The realization of these functions depends on the seamless inte-
gration of sensor components, signal acquisition, processing and 
transmission circuits, computational units, cloud platforms, as well as 
standardized clinical procedures and protocols, which is a systemic en-
gineering endeavor. Ergonomically designed to integrate high-speed, 
high-precision ADCs, high-capacity batteries, low-power MCUs, Blue-
tooth 6.0, and AI technologies, the aim is to establish a multimodal data 

collection and multi-signal wireless transmission system. This will 
facilitate the development of a new generation of intelligent wearable 
devices, enhancing their accuracy, efficiency, comfort, and convenience 
for cardiovascular health monitoring. However, to achieve the above 
goals, current smart wearable devices still face important challenges, 
such as miniaturization, flexibility, accuracy, intelligence, user comfort, 
privacy, etc. Here, we summarize and look forward to the four aspects of 
device design, algorithm optimization, comfort reliability, and security.

Device design

When designing a wearable device, to ensure that the device meets 
the functional requirements and to optimize the user experience and 
device performance, we need to consider all four key aspects: Material 
design, Structural design, Energy management and Sensing technology.

The choice of materials is crucial for improving the performance of 
sensors, directly affecting the sensitivity, response speed and stability of 
the device. Advanced materials such as graphene and liquid metal can 
enhance the quality and stability of signal transmission due to their 
excellent electrical conductivity and mechanical flexibility, thereby 
improving the accuracy of detection of biological signals such as ECG. 
Sensing materials with surface microstructure can significantly improve 
the sensing performance by increasing local stress or increasing the 
contact area. The choice of high-strength materials such as carbon fiber 
composites significantly improves the durability and service life of the 
device. The use of waterproof and dustproof materials such as PTFE and 
PI can effectively protect the internal electronic components and ensure 
the normal operation of the device in various environments. The use of 
flexible, stretchable and skin-friendly materials such as silicone elasto-
mers and hydrogels ensures long-term wearing comfort and the stability 
of the device under activities. Breathable materials such as fabric elec-
trode can reduce heat build-up on the skin and improve the user expe-
rience. Overall, by optimizing material design, wearable sensors have 
greatly improved in terms of performance, comfort and durability, 
meeting the diverse needs of cardiovascular health monitoring. In the 
future, with the continuous advancement of materials science, wearable 
devices will become smarter and more versatile. For example, self- 
healing materials can automatically repair damage and extend the ser-
vice life of sensors. Smart response materials can adjust themselves ac-
cording to changes in the external environment, improving the 
adaptability and reliability of the device. The research and application 
of conductive polymers will provide sensors with better flexibility and 
conductivity. Innovations in biocompatible materials will boost the 
safety and comfort of long-term wear.

In the structural design of wearable devices, physical layout, 
component integration, and mechanical stability are prioritized design 
factors for smart wearable devices. Optimizing the physical layout is 
critical to ensure that electronic components such as sensors, batteries, 
and processors are properly configured to maintain the compactness and 
lightweight nature of the device. In addition, component integration 
requires highly integrated circuitry and modular design to optimize 
device functionality and user experience. Integrating functional com-
ponents into a stacked multilayer design can effectively address the 
limitations of traditional single-layer design in terms of functional 
density[181–183]. MEMS have the advantages of small size, light 
weight, low cost, low power consumption, and high reliability, which 
greatly contribute to the miniaturization of wearable devices. Mechan-
ical stability is also critical to ensure the durability and long-term 
integrity of the device during daily activities. With these integrated 
structural design considerations, wearable devices not only provide 
sustained performance, but also maintain maximum user comfort and 
satisfaction.

In terms of energy management, although the batteries of wearable 
devices have taken up a large portion of the overall system space, to 
achieve the goal of long-term continuous monitoring, the current battery 
capacity is still very limited, so it is necessary to further reduce the 
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overall power consumption of the system. The first step can be to opti-
mize the hardware design, such as choosing MCUs with lower power 
consumption or using self-driven sensors such as triboelectric sensors 
and piezoelectric sensors to reduce the power consumption of the 
sensing unit. On the other hand, optimization can be done in terms of 
software design, such as reducing back-end data transmission and 
limiting network connections, which are also important strategies for 
improving energy efficiency. In conclusion, energy management of 
wearable devices requires comprehensive consideration of multiple 
factors such as hardware, software and user interaction to extend the 
usage time of the device and provide a better user experience.

In the design of sensing technologies for wearable devices, the se-
lection and optimization of sensors is key to improving the efficiency 
and functionality of the devices[184]. In particular, it is important to 
select self-driven or energy-harvesting sensors such as triboelectric 
sensors and piezoelectric sensors, which generate electrical energy while 
collecting data, thereby reducing the overall device energy consump-
tion. These types of sensors utilize the user’s daily activities (e.g., 
walking, running) to generate energy, which not only reduces reliance 
on traditional batteries, but also increases the device’s uptime and in-
dependence. By directly converting mechanical energy into electrical 
energy, this self-driven sensing technology provides an efficient way to 
continuously monitor a user’s physiological state without consuming 
additional power. In addition, the integration of these sensors requires 
precise design and layout to ensure their effectiveness and sensitivity in 
the device while keeping it lightweight and comfortable. By utilizing 
advanced micromachining techniques, these sensors can be designed to 
be extremely tiny and efficient for long-wearing application scenarios.

Algorithm optimization

Algorithm optimization is a crucial aspect in the design of AI-based 
wearable devices, with the main purpose of improving the processing 
efficiency of the devices, reducing power consumption, and coping with 
the need to process massive amounts of data. Effective algorithm opti-
mization can significantly improve the performance of the device, 
making it more accurate and efficient in real-time analysis of complex 
ECG signals and detection of CVDs.

First, optimizing algorithms mainly involves improving data pro-
cessing speed and accuracy. For example, by introducing efficient data 
compression and preprocessing techniques, the amount of data that the 
device needs to process and transmit can be reduced, resulting in lower 
energy consumption and longer battery life. In addition, the use of 
advanced machine learning models such as convolutional neural net-
works and recurrent neural networks can improve the ability to classify 
and analyze biosignal.

Wearable devices are able to collect richer and more diverse data 
than traditional medical means through continuous and real-time 
monitoring. This 24/7 data collection significantly increases the 
amount of data and provides more training samples for machine 
learning models, which improves the learning effectiveness and pre-
dictive power of algorithms. For example, in CVDs monitoring, data 
recorded continuously through ECG and activity monitoring sensors can 
be used to train algorithms to identify heart rhythm abnormalities and 
assess cardiovascular health status[185]. The addition of this data not 
only optimizes the algorithm’s ability to recognize complex patterns, but 
also enhances the algorithm’s adaptability and accuracy in diverse and 
uncontrolled environments. Additionally, data collected by wearables 
has a higher degree of life fit and physiological response in natural 
states, which is especially critical for studying how physiological states 
change in everyday environments. For example, in CVDs monitoring, 
where traditional ECG tests may not be able to capture changes in a 
patient’s heart rate under specific life stressors, wearables can record 
this critical data, opening up possibilities for early diagnosis and 
personalized treatment. This data from everyday life increases diag-
nostic accuracy and provides a new perspective on disease management.

In addition, by integrating and applying deep learning techniques 
such as Generative Adversarial Networks, the scope of data augmenta-
tion can be further extended and the generalization ability of the models 
can be improved. The application of these techniques is not limited to 
data augmentation, but also includes automatic feature extraction and 
anomaly detection, which are key factors in improving algorithm opti-
mization and device performance[186–188].

In conclusion, algorithm optimization plays a decisive role in 
improving the core competitiveness of AI-based wearable devices. 
Through targeted continuous learning and iteration, wearable devices 
based on AI can perform personalized data analysis and prediction ac-
cording to different individual situations. By collecting and analyzing 
user biological data, devices can provide accurate assessment of car-
diovascular health status and provide targeted recommendations and 
solutions based on individual needs. In addition, a universal AI based on 
large models can also be established, which can seamlessly integrate 
with other intelligent devices and medical systems. The device can be 
connected to the systems of hospitals, clinics, and other medical in-
stitutions, and can interact and share data with other medical devices 
and databases. This integration enhances diagnostic accuracy, providing 
more reliable cardiovascular health services.

Comfort and reliability

Ensuring a comfortable wearing experience is crucial for the prac-
tical application of wearable devices. Future devices need lightweight 
designs that provide adequate ventilation and comfort at the skin con-
tact areas. Usability is equally important; devices should be operable by 
even non-professionals. Future models will feature user-friendly in-
terfaces with large screens, voice interaction, tactile feedback, and 
streamlined user processes, making it easy for users to access and un-
derstand their cardiovascular health data effortlessly.

The stability of the system is essential for the accuracy and reliability 
of wearable devices, especially in long-term monitoring. As wearable 
technology evolves, enhanced sensors and algorithms will improve the 
quality of biological signal acquisition and analysis. This advancement 
will enable effective monitoring of critical health indicators such as 
heart function, BP, and heart rate variability, providing more depend-
able health data. Improved stability will also allow medical pro-
fessionals to better track patient cardiovascular status, facilitating 
accurate diagnoses and treatment planning.

Reducing the impact on users is a pivotal direction for the develop-
ment of smart wearable devices. Long-term wear should minimally 
affect user comfort and freedom. To reduce user impact, future devices 
will aim to avoid excessive diagnostic procedures. For instance, studies 
like the apple heart research have shown that overdiagnosis of atrial 
fibrillation can increase the burden on clinics and elevate patient stress
[189]. Future wearable devices will focus on seamless integration into a 
broader health ecosystem. Integration with health management tools 
and electronic medical records systems allows for unified data man-
agement and more precise diagnostics.

Safety

Data security is crucial when using wearable devices for cardiovas-
cular health monitoring[190,191]. The primary design focus of smart 
wearable programs should be the protection of user data privacy. Since 
device manufacturers often collect data, robust security mechanisms are 
essential in future devices to safeguard personal and medical informa-
tion against unauthorized access and use. Enhancements in key man-
agement, encryption, and secure data transmission protocols will be 
central to device development to maintain data privacy and integrity.

Mechanical safety is vital for user safety during long-term use of 
wearable devices. Electrical risks like short circuits and overheating, 
mechanical risks such as breakage and wear, and biological risks 
including biocompatibility and infection must be carefully managed. 

Y. Wang et al.                                                                                                                                                                                                                                   Nano Today 59 (2024) 102544 

22 



Developing strategies to handle mechanical stress, prevent electrical 
failures, and enhance device integration is crucial. Future devices must 
meet safety standards to prevent skin irritation, allergies, and other 
potential damages. Additionally, the fit and stability of the device are 
crucial to ensure a safe and comfortable user experience. Effective 
regulation is essential for the safe operation of wearable devices. Before 
deployment, stringent testing procedures and regulatory standards must 
be established by relevant authorities to ensure device safety and 
effectiveness.
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[56] T.S. Hartikainen, N.A. Sörensen, P.M. Haller, A. Goßling, J. Lehmacher, T. Zeller, 
S. Blankenberg, D. Westermann, J.T. Neumann, Clinical application of the 4th 
Universal Definition of Myocardial Infarction, Eur. Heart J. 41 (2020) 
2209–2216, https://doi.org/10.1093/eurheartj/ehaa035.

[57] Gara Patrick T. O, F.G. Kushner, D.D. Ascheim, D.E. Casey, M.K. Chung, L.J.A. de, 
S.M. Ettinger, J.C. Fang, F.M. Fesmire, B.A. Franklin, C.B. Granger, H. 
M. Krumholz, J.A. Linderbaum, D.A. Morrow, L.K. Newby, J.P. Ornato, N. Ou, M. 
J. Radford, -Holland Jacqueline E. Tamis, C.L. Tommaso, C.M. Tracy, Y.J. Woo, D. 
X. Zhao, ACCF/AHA guideline for the management of ST-elevation myocardial 
infarction, J. Am. Coll. Cardiol. 61 (2013) (2013) e78–e140, https://doi.org/ 
10.1016/j.jacc.2012.11.019.

[58] S.S. Al-Zaiti, J.A. Fallavollita, Y.-W.B. Wu, M.R. Tomita, M.G. Carey, 
Electrocardiogram-based predictors of clinical outcomes: A meta-analysis of the 
prognostic value of ventricular repolarization, Heart Lung 43 (2014) 516–526, 
https://doi.org/10.1016/j.hrtlng.2014.05.004.

[59] B. Maisch, H. Mahrholdt, ESC-Leitlinie 2014 zur Diagnose und zum Management 
der hypertrophischen Kardiomyopathie, Herz 39 (2014) 919–930, https://doi. 
org/10.1007/s00059-014-4177-z.

[60] E. Vavrinsky, J. Subjak, M. Donoval, A. Wagner, T. Zavodnik, H. Svobodova, 
Application of modern multi-sensor holter in diagnosis and treatment, Sensors 20 
(2020) 2663, https://doi.org/10.3390/s20092663.

[61] H.L. Kennedy, The History, science, and innovation of holter technology, Ann. 
Noninvasive Electrocardiol. 11 (2006) 85–94, https://doi.org/10.1111/j.1542- 
474X.2006.00067.x.

[62] S. Singhal, M. Kumar, A systematic review on artificial intelligence-based 
techniques for diagnosis of cardiovascular arrhythmia diseases: challenges and 
opportunities, Arch. Comput. Methods Eng. (2022), https://doi.org/10.1007/ 
s11831-022-09823-7.

[63] T. Cui, Y. Qiao, D. Li, X. Huang, L. Yang, A. Yan, Z. Chen, J. Xu, X. Tan, J. Jian, 
Z. Li, S. Ji, H. Liu, Y. Yang, X. Zhang, T.-L. Ren, Multifunctional, breathable 
MXene-PU mesh electronic skin for wearable intelligent 12-lead ECG monitoring 
system, Chem. Eng. J. 455 (2023) 140690, https://doi.org/10.1016/j. 
cej.2022.140690.

[64] K. Huang, J. Liu, S. Lin, Y. Wu, E. Chen, Z. He, M. Lei, Flexible silver nanowire dry 
electrodes for long-term electrocardiographic monitoring, Adv. Compos. Hybrid. 
Mater. 5 (2022) 220–228, https://doi.org/10.1007/s42114-021-00322-0.

[65] K.C. Siontis, P.A. Noseworthy, Z.I. Attia, P.A. Friedman, Artificial intelligence- 
enhanced electrocardiography in cardiovascular disease management, Nat. Rev. 
Cardiol. 18 (2021) 465–478, https://doi.org/10.1038/s41569-020-00503-2.

[66] V. Sangha, B.J. Mortazavi, A.D. Haimovich, A.H. Ribeiro, C.A. Brandt, D. 
L. Jacoby, W.L. Schulz, H.M. Krumholz, A.L.P. Ribeiro, R. Khera, Automated 
multilabel diagnosis on electrocardiographic images and signals, Nat. Commun. 
13 (2022) 1583, https://doi.org/10.1038/s41467-022-29153-3.

[67] S. Gong, L.W. Yap, Y. Zhang, J. He, J. Yin, F. Marzbanrad, D.M. Kaye, W. Cheng, 
A gold nanowire-integrated soft wearable system for dynamic continuous non- 
invasive cardiac monitoring, Biosens. Bioelectron. 205 (2022) 114072, https:// 
doi.org/10.1016/j.bios.2022.114072.

[68] M. Amini, J. Hisdal, H. Kalvøy, Applications of bioimpedance measurement 
techniques in tissue engineering, J. Electr. Bioimpedance 9 (2018) 142–158, 
https://doi.org/10.2478/joeb-2018-0019.

[69] G. Anand, Y. Yu, A. Lowe, A. Kalra, Bioimpedance analysis as a tool for 
hemodynamic monitoring: overview, methods and challenges, Physiol. Meas. 42 
(2021) 03TR01, https://doi.org/10.1088/1361-6579/abe80e.

[70] D. Naranjo-Hernández, J. Reina-Tosina, M. Min, Fundamentals, recent advances, 
and future challenges in bioimpedance devices for healthcare applications, 
J. Sens. 2019 (2019) e9210258, https://doi.org/10.1155/2019/9210258.

[71] O. Byambasukh, M.F. Eisenga, R.T. Gansevoort, S.J. Bakker, E. Corpeleijn, Body 
fat estimates from bioelectrical impedance equations in cardiovascular risk 
assessment: The PREVEND cohort study, Eur. J. Prev. Cardiol. 26 (2019) 
905–916, https://doi.org/10.1177/2047487319833283.

[72] T.K. Bera, Bioelectrical impedance methods for noninvasive health monitoring: a 
review, J. Med. Eng. 2014 (2014) 1–28, https://doi.org/10.1155/2014/381251.

[73] M.A. Khaled, M. Khatun, M. Haque, I. Kabir, D. Mahalanabis, Single, dual and 
multi-frequency bioimpedance to measure human body composition. Proceedings 
of the First Regional Conference, IEEE Engineering in Medicine and Biology 
Society and 14th Conference of the Biomedical Engineering Society of India, An 

Y. Wang et al.                                                                                                                                                                                                                                   Nano Today 59 (2024) 102544 

25 

https://doi.org/10.1016/j.compbiomed.2022.105550
https://doi.org/10.1016/j.compbiomed.2022.105550
https://doi.org/10.1002/ejhf.1614
https://doi.org/10.1002/ejhf.1614
https://doi.org/10.1001/jamacardio.2022.1916
https://doi.org/10.1161/HYPERTENSIONAHA.119.14240
https://doi.org/10.1161/HYPERTENSIONAHA.119.14240
https://doi.org/10.1002/adfm.201806388
https://doi.org/10.1002/adfm.201806388
https://doi.org/10.1021/acssensors.0c02324
https://doi.org/10.3390/mi14040804
https://doi.org/10.3390/mi14040804
https://doi.org/10.1002/adma.202109357
https://doi.org/10.1007/s10278-014-9722-z
https://doi.org/10.1146/annurev-fluid-122109-160730
https://doi.org/10.1146/annurev-fluid-122109-160730
http://refhub.elsevier.com/S1748-0132(24)00400-6/sbref38
http://refhub.elsevier.com/S1748-0132(24)00400-6/sbref38
https://doi.org/10.1155/2012/903107
https://doi.org/10.1088/0967-3334/31/1/R01
https://doi.org/10.1115/OMAE2016-55106
https://doi.org/10.1002/adma.202110291
https://doi.org/10.1016/j.hrthm.2020.01.034
https://doi.org/10.1016/j.hrthm.2020.01.034
https://doi.org/10.1038/s41746-019-0207-9
https://doi.org/10.1038/s41746-019-0207-9
https://doi.org/10.2147/MDER.S47319
https://doi.org/10.2147/MDER.S47319
https://doi.org/10.1016/S2589-7500(23)00087-0
https://doi.org/10.1016/j.hrthm.2020.02.023
https://doi.org/10.1016/j.hrthm.2020.02.023
https://doi.org/10.1126/sciadv.aaw7846
https://doi.org/10.1126/sciadv.1501856
https://doi.org/10.3390/s18061894
https://doi.org/10.3390/s18061894
https://doi.org/10.11909/j.issn.1671-5411.2015.04.018
https://doi.org/10.11909/j.issn.1671-5411.2015.04.018
https://doi.org/10.1016/j.xcrp.2021.100541
https://doi.org/10.1016/j.xcrp.2021.100541
https://doi.org/10.3389/frsip.2022.866047
https://doi.org/10.3389/frsip.2022.866047
https://doi.org/10.1093/eurheartj/ehaa612
https://doi.org/10.1093/eurheartj/ehaa035
https://doi.org/10.1016/j.jacc.2012.11.019
https://doi.org/10.1016/j.jacc.2012.11.019
https://doi.org/10.1016/j.hrtlng.2014.05.004
https://doi.org/10.1007/s00059-014-4177-z
https://doi.org/10.1007/s00059-014-4177-z
https://doi.org/10.3390/s20092663
https://doi.org/10.1111/j.1542-474X.2006.00067.x
https://doi.org/10.1111/j.1542-474X.2006.00067.x
https://doi.org/10.1007/s11831-022-09823-7
https://doi.org/10.1007/s11831-022-09823-7
https://doi.org/10.1016/j.cej.2022.140690
https://doi.org/10.1016/j.cej.2022.140690
https://doi.org/10.1007/s42114-021-00322-0
https://doi.org/10.1038/s41569-020-00503-2
https://doi.org/10.1038/s41467-022-29153-3
https://doi.org/10.1016/j.bios.2022.114072
https://doi.org/10.1016/j.bios.2022.114072
https://doi.org/10.2478/joeb-2018-0019
https://doi.org/10.1088/1361-6579/abe80e
https://doi.org/10.1155/2019/9210258
https://doi.org/10.1177/2047487319833283
https://doi.org/10.1155/2014/381251


International Meet, 1995, pp. 1/87–1/88, https://doi.org/10.1109/ 
RCEMBS.1995.508703.

[74] P. Kassanos, Bioimpedance sensors: a tutorial, IEEE Sens. J. 21 (2021) 
22190–22219, https://doi.org/10.1109/JSEN.2021.3110283.

[75] A.V. Sahakian, W.J. Tompkins, J.G. Webster, Electrode motion artifacts in 
electrical impedance pneumography, IEEE Trans. Biomed. Eng. BME 32 (1985) 
448–451, https://doi.org/10.1109/TBME.1985.325453.

[76] M. Etemadi, O.T. Inan, Wearable ballistocardiogram and seismocardiogram 
systems for health and performance, J. Appl. Physiol. 124 (2018) 452–461, 
https://doi.org/10.1152/japplphysiol.00298.2017.

[77] D. Rai, H.K. Thakkar, S.S. Rajput, J. Santamaria, C. Bhatt, F. Roca, 
A comprehensive review on seismocardiogram: current advancements on 
acquisition, annotation, and applications, Mathematics 9 (2021) 2243, https:// 
doi.org/10.3390/math9182243.

[78] X. Han, X. Wu, J. Wang, H. Li, K. Cao, H. Cao, K. Zhong, X. Yang, The Latest 
progress and development trend in the research of ballistocardiography (BCG) 
and seismocardiogram (scg) in the field of health care, Appl. Sci. 11 (2021) 8896, 
https://doi.org/10.3390/app11198896.

[79] P. Mounsey, Præcordial ballistocardiography, Br, Heart J. 19 (1957) 259–271.
[80] I. Starr, A.J. Rawson, H.A. Schroeder, N.R. Joseph, Studies on the estimation of 

cardiac ouptut in man, and of abnormalities in cardiac function, from the heart’s 
recoil and the blood’s impacts; the ballistocardiogram, Am. J. Physiol. -Leg. 
Content 127 (1939) 1–28, https://doi.org/10.1152/ajplegacy.1939.127.1.1.

[81] C.-S. Kim, S.L. Ober, M.S. McMurtry, B.A. Finegan, O.T. Inan, R. Mukkamala, J.- 
O. Hahn, Ballistocardiogram: Mechanism and Potential for Unobtrusive 
Cardiovascular Health Monitoring, Sci. Rep. 6 (2016) 31297, https://doi.org/ 
10.1038/srep31297.

[82] J.M. Zanetti, K. Tavakolian, Seismocardiography: Past, present and future, 35th 
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC) 2013 (2013) 7004–7007, 
https://doi.org/10.1109/EMBC.2013.6611170.

[83] I. Sadek, J. Biswas, B. Abdulrazak, Ballistocardiogram signal processing: a review, 
Health Inf. Sci. Syst. 7 (2019) 10, https://doi.org/10.1007/s13755-019-0071-7.

[84] X. Wen, Y. Huang, X. Wu, B. Zhang, A Feasible Feature Extraction Method for 
Atrial Fibrillation Detection From BCG, IEEE J. Biomed. Health Inform. 24 (2020) 
1093–1103, https://doi.org/10.1109/JBHI.2019.2927165.

[85] O.T. Inan, P.-F. Migeotte, K.-S. Park, M. Etemadi, K. Tavakolian, R. Casanella, 
J. Zanetti, J. Tank, I. Funtova, G.K. Prisk, M. Di Rienzo, Ballistocardiography and 
seismocardiography: a review of recent advances, IEEE J. Biomed. Health Inform. 
19 (2015) 1414–1427, https://doi.org/10.1109/JBHI.2014.2361732.

[86] M.J.S. Lowe, D.N. Alleyne, P. Cawley, Defect detection in pipes using guided 
waves, Ultrasonics 36 (1998) 147–154, https://doi.org/10.1016/S0041-624X 
(97)00038-3.

[87] B.W. Drinkwater, P.D. Wilcox, Ultrasonic arrays for non-destructive evaluation: A 
review, NDT E Int. 39 (2006) 525–541, https://doi.org/10.1016/j. 
ndteint.2006.03.006.

[88] N. Waingankar, B.R. Gilbert, History of Ultrasound in Urology, in: P.F. Fulgham, 
B.R. Gilbert (Eds.), Practical Urological Ultrasound, Springer, New York, NY, 
2013, pp. 1–8, https://doi.org/10.1007/978-1-59745-351-6_1.

[89] N.C. Nanda, M.C. Hsiung, J.P. Youngblood, D. Maulik, Doppler color flow 
mapping of the fetal heart, Angiology 37 (1986) 628–632, https://doi.org/ 
10.1177/000331978603700902.

[90] U.M. Hamper, M.R. DeJong, C.I. Caskey, S. Sheth, Power Doppler imaging: 
clinical experience and correlation with color Doppler US and other imaging 
modalities, RadioGraphics 17 (1997) 499–513, https://doi.org/10.1148/ 
radiographics.17.2.9084086.

[91] S. Yagel, S.M. Cohen, I. Shapiro, D.V. Valsky, 3D and 4D ultrasound in fetal 
cardiac scanning: a new look at the fetal heart, Ultrasound Obstet. Gynecol. 29 
(2007) 81–95, https://doi.org/10.1002/uog.3912.

[92] Dr.F.-D. Lebit, P.Dr.R. Vladareanu, The Role of 4D Ultrasound in the Assessment 
of Fetal Behaviour, Maedica 6 (2011) 120–127.

[93] H. Hu, X. Zhu, C. Wang, L. Zhang, X. Li, S. Lee, Z. Huang, R. Chen, Z. Chen, 
C. Wang, Y. Gu, Y. Chen, Y. Lei, T. Zhang, N. Kim, Y. Guo, Y. Teng, W. Zhou, Y. Li, 
A. Nomoto, S. Sternini, Q. Zhou, M. Pharr, F.L. di Scalea, S. Xu, Stretchable 
ultrasonic transducer arrays for three-dimensional imaging on complex surfaces, 
Sci. Adv. 4 (2018) eaar3979, https://doi.org/10.1126/sciadv.aar3979.

[94] F. Wang, P. Jin, Y. Feng, J. Fu, P. Wang, X. Liu, Y. Zhang, Y. Ma, Y. Yang, A. Yang, 
X. Feng, Flexible Doppler ultrasound device for the monitoring of blood flow 
velocity, Sci. Adv. 7 (2021) eabi9283, https://doi.org/10.1126/sciadv.abi9283.

[95] H. Hu, H. Huang, M. Li, X. Gao, L. Yin, R. Qi, R.S. Wu, X. Chen, Y. Ma, K. Shi, 
C. Li, T.M. Maus, B. Huang, C. Lu, M. Lin, S. Zhou, Z. Lou, Y. Gu, Y. Chen, Y. Lei, 
X. Wang, R. Wang, W. Yue, X. Yang, Y. Bian, J. Mu, G. Park, S. Xiang, S. Cai, P. 
W. Corey, J. Wang, S. Xu, A wearable cardiac ultrasound imager, Nature 613 
(2023) 667–675, https://doi.org/10.1038/s41586-022-05498-z.

[96] C. Wang, X. Li, H. Hu, L. Zhang, Z. Huang, M. Lin, Z. Zhang, Z. Yin, B. Huang, 
H. Gong, S. Bhaskaran, Y. Gu, M. Makihata, Y. Guo, Y. Lei, Y. Chen, C. Wang, 
Y. Li, T. Zhang, Z. Chen, A.P. Pisano, L. Zhang, Q. Zhou, S. Xu, Monitoring of the 
central blood pressure waveform via a conformal ultrasonic device, Nat. Biomed. 
Eng. 2 (2018) 687–695, https://doi.org/10.1038/s41551-018-0287-x.

[97] Z. Izadifar, Z. Izadifar, D. Chapman, P. Babyn, An introduction to high intensity 
focused ultrasound: systematic review on principles, devices, and clinical 
applications, J. Clin. Med 9 (2020) 460, https://doi.org/10.3390/jcm9020460.

[98] C.M. Moran, A.J.W. Thomson, Preclinical ultrasound imaging—a review of 
techniques and imaging applications, Front. Phys. 8 (2020) 124, https://doi.org/ 
10.3389/fphy.2020.00124.

[99] J. Hausman, G. Pollock, Basic Science: Principles of Ultrasound: Obtaining an 
Image, Resolution, Depth, Frequency, Resonance, in: R.K. Banik (Ed.), 

Anesthesiology In-Training Exam Review: Regional Anesthesia and Chronic Pain, 
Springer International Publishing, Cham, 2022, pp. 3–8, https://doi.org/ 
10.1007/978-3-030-87266-3_1.

[100] C.C. Moreno, Diagnostic ultrasound: physics and equipment, second edition, 
Acad. Radiol. 19 (2012) 774–775, https://doi.org/10.1016/j.acra.2012.02.017.

[101] M. Cikes, L. Tong, G.R. Sutherland, ’hooge Jan D, Ultrafast Cardiac Ultrasound 
Imaging, JACC: Cardiovasc. Imaging 7 (2014) 812–823, https://doi.org/ 
10.1016/j.jcmg.2014.06.004.

[102] J.M. Sanches, A.F. Laine, J.S. Suri (Eds.), Ultrasound Imaging: Advances and 
Applications, Springer US, Boston, MA, 2012, https://doi.org/10.1007/978-1- 
4614-1180-2.

[103] O. Villemain, J. Robin, A. Bel, W. Kwiecinski, P. Bruneval, B. Arnal, émond M. R, 
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