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The Schottky contact which is a crucial interface between semiconductors and metals is becoming
increasingly significant in nano-semiconductor devices. A Schottky barrier, also known as the energy bar-
rier, controls the depletion width and carrier transport across the metal–semiconductor interface.
Controlling or adjusting Schottky barrier height (SBH) has always been a vital issue in the successful oper-
ation of any semiconductor device. This review provides a comprehensive overview of the static and
dynamic adjustment methods of SBH, with a particular focus on the recent advancements in nano-
semiconductor devices. These methods encompass the work function of the metals, interface gap states,
surface modification, image-lowering effect, external electric field, light illumination, and piezotronic
effect. We also discuss strategies to overcome the Fermi-level pinning effect caused by interface gap
states, including van der Waals contact and 1D edge metal contact. Finally, this review concludes with
future perspectives in this field.

� 2024 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

Metal-semiconductor contacts are a fundamental component of
semiconductor devices. Among them, the Schottky contact is a vital
type of metal–semiconductor contact, which arises due to (I) the
disparity between the electron affinity of semiconductors and the
work function of metals, as well as (II) the Fermi level pinning of
the semiconductor [1–5]. The Schottky barrier is an energy barrier
that can adjust the depletion width and carrier transport across the
interface [6]. At a fixed bias voltage, the current and barrier height
exhibit an exponential relationship, which makes the Schottky bar-
rier crucial for the operation of any semiconductor device. Among
them, devices constructed with nano-structured semiconductors,
which exhibit unique physicochemical properties due to their
physically confined structures in one dimension at least, have gar-
nered significant attention. However, the intense scientific interest
in SBH still pales in comparison with the pressure and demand to
regulate SBH and solve the contact problem in nano-
semiconductor devices. In the semiconductor industry, it is hoped
to achieve zero SBH to reduce carrier injection barriers and contact.
Conversely, a suitable SBH is necessary for the application of Schot-
tky sensor. Therefore, adjusting the Schottky barrier height to
obtain an appropriate value is crucial for electronic devices, as
device performance can be significantly enhanced by adjusting
the SBH [7,8].

This review summarizes the methods used to adjust the SBH in
nano-semiconductor devices, including the work function of the
metals, the interface gap states of nano-semiconductors, Fermi
level pinning, surface modification, image-lowering effect, external
electric field, light illumination, and piezotronic effect (Fig. 1),
which is crucial to the research field and the semiconductor
industry.

2. Condition and theory for the formation of Schottky barrier

In the ideal scenario, the SBH heavily depends on the work func-
tion of metal, as predicted by the Schottky-Mott theory [9,10].
According to this theory, the SBH of an n-type semiconductor is
determined by the electron affinity of the semiconductor and the
work function of the metal (Fig. 2a, Eq. (1)). For p-type semicon-
ductors, the bandgaps of the semiconductors must be considered
(Fig. 2b, Eq. (2)). However, in reality, the Schottky-Mott relation-
ship (Eqs. (1) and (2)) does not align with experimental results.
Specifically, the SBH is insensitive to the work functions metal
evices,
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Fig. 1. (Color online) Adjustment methods of SBH.
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owing to the Fermi level pinning. The Fermi level pinning effect
caused by interface gap states, such as surface defects, chemical
bonding, and surface dipoles [6,11,12], must be considered in the
determination of Schottky barrier height. This effect is particularly
pronounced in nanomaterials with a high surface-to-volume ratio
[13].

q/Bn0 ¼ q/m � qvS; ð1Þ

q/Bp0 ¼ Eg � qð/m � vSÞ; ð2Þ

where q/Bn0 is SBH for the n-type semiconductor; q/m is the work
function of metal; qvS is electron affinity of semiconductor; q is the
unit electronic charge; Eg is the bandgap of semiconductor.
3. Adjustment methods of SBH

SBH dominates carrier transport across the metal–semiconduc-
tor interface. By adjusting the SBH, the detection performance of
Schottky devices for gases, molecules, light, strain, and more can
be enhanced [7].

3.1. Work function of metals

Despite the fact that SBH is insensitive to the work function of
the metals, particularly in three-dimensional (3D) semiconductor
materials, because the termination of three-dimensional semicon-
ductor materials on the surface leads to strong Fermi level pinning,
metals with high work function tend to form Schottky contacts
with n-type semiconductors, while the results of p-type semicon-
ductors are opposite. Additionally, low resistance metals can min-
imize their impact on the performance of Schottky device. Metals
or metal-like materials with high work-function, such as Au, Ag,
Pt, Pd, Cu, Ni, and graphene (metal-like), are typically preferred
for forming Schottky contacts in n-type semiconductors [14]. The
SBH is high when high work-function metals are selected. Fig. 3
summarizes the work functions of polycrystalline metals. The
Fig. 2. (Color online) Energy band diagram of Schottky contact at metal–semiconductor in
in potential.
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highest work function of Pt is 5.64 eV, and the lowest work func-
tion of cesium is 1.93 eV. Although the measured work functions
of polycrystalline metals are constant, experimental data show
that SBHs formed between polycrystalline metals and semiconduc-
tors are always inhomogeneous, as reflected in the I–V curve. This
suggests that the work function varies with the exposed crystal
planes. For instance, the work function of Pt ranges between 5.12
and 5.93 eV, depending on the crystal plane.

Unlike 3D materials, which have many surface dangling bonds,
two-dimensional (2D) semiconductor materials have garnered
renewed attention due to the absence of dangling bonds. These
materials offer a promising approach to avoiding Fermi level pin-
ning and chemical disorder, and they are expected to achieve a lin-
ear relationship with a slope of unity between SBH and the metal
work function, which greatly facilitates the adjustment of Schottky
barrier by changing metal work function. Pan et al. [15] attempted
to adjust the SBH and carrier types of graphene by changing the
contact metal. Ohmic or quasi-Ohmic contact is formed when
graphdiyne contacts metals with low work functions, such as Al,
Ag, and Cu. When graphdiyne contacts with Pd (SBH = 0.21 eV)
and Au (SBH = 0.46 eV), an n-type Schottky barrier is formed.
Higher work function metals such as Pt, Ni, and Ir, tend to form a
p-type Schottky barrier with barrier heights of 0.30, 0.41, and
0.46 eV, respectively (Fig. 3b).

In the case of n-type few-layer MoS2, a detailed temperature-
dependent study reveals that SBHs are �230, �150, �50, and
�30 meV for Pt, Ni, Ti, and Sc, respectively (Fig. 3c) [16]. The SBH
increases with the increase of work function. The slope, or interface
behavior parameter S (S = USB/Um), is roughly 0.1, indicating the
strong Fermi level pinning near the conductive band. Despite the
work function of metal being pinned around the MoS2 conduction
band edge due to the Fermi pinning level effect, high work-
function metals yield a high SBH [16]. To overcome the Fermi level
pinning effect, an effective method, 1D edge contact, is proposed.
Fig. 3d illustrates a clear distinction between the work function
alignment for 1D edge contact and 2D surface contact [17]. Fur-
thermore, a suitable metal can change the injection carrier (holes
or electrons) type of field-effect transistors (FETs). It is found in
the FETs of a single-wall carbon nanotube (CNT). The ballistic p-
type CNT FETs are yielded when a single-wall CNT contacts with
Pd (5.1 eV) [18–20], while ballistic n-type CNT FETs are produced
when a single wall CNT contacts with Sc (3.3 eV) with a low work
function (Fig. 3e) [21,22].
3.2. Interface gap states in semiconductors

Due to the surface termination of the finite crystal in a 3D peri-
odic structure, surface states within the bandgap of semiconduc-
tors are created. This leads to surface dangling bonds, incomplete
covalent bonds, or surface reconstructions, resulting in Fermi level
pinning at these energy levels [23]. When metal and 3D semicon-
ductor come into contact, a metastable structure interface is
terface. (a) n-type semiconductor, (b) p-type semiconductor. qɸB is SBH,wbi is built-



Fig. 3. (Color online) The influence of work function of metal on SBH. (a) Work function /exp
m (eV) of element in periodic table. Data obtained from polycrystalline specimens in

Ref. [14]. (b) Line-up of work function of metal before and after contact with graphdiyne. Reproduced with permission from Ref. [15]. Copyright � 2009, Royal Society of
Chemistry. (c) SBH of MoS2 contacted with of Sc, Ti, Ni, and Pt, and its performance of transistor. Reproduced with permission from Ref. [16]. Copyright � 2013, American
Chemical Society. (d) Work function alignment of metal-MoS2 FETs. Reproduced with permission from Ref. [17]. Copyright � 2019, Wiley-VCH. (e) A single-walled CNT
inverter composed of Pd CNT FET (p-type) and Sc-CNT FET (n-type). Reproduced with permission from Ref. [21]. Copyright � 2007, American Chemical Society.
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formed, where unique electronic and atomic structures are formed
to minimize energy. The presence of interface gap states can sus-
tain local minima of free energy rather than global minima. Addi-
tionally, chemical bonding and interdiffusion at the metal–
semiconductor interface can induce significant strain in both crys-
tal lattices, change the band structures and lead to barrier
[11,24,25]. The typical techniques for material fabrication and
device integration often introduce an additional interface-trap
state, serving as a reservoir for electrons or holes and causing
Fermi level pinning [26]. The phenomenon of Fermi level pinning
is closely related to the interface gap states in semiconductors
(n-type in Fig. 4a and p-type in Fig. 4c).

Much causation about the formation of interface gap states has
been proposed to explain the Fermi level pinning effect. They
include surface states, metal-induced gap states (MIGS) [16],
defect-related states, and disorder-induced gap states (DIGS)
(Fig. 4b) [6,11,12]. The associated theories, including fixed separa-
tion theory, variable electron affinity theory, and bond polarization
theory, have been proposed to quantify the impact of interface gap
states on the Fermi level pinning effect [27].

The rise of 2D semiconductor materials brings us the opportu-
nity to achieve an almost perfect surface without surface recon-
structions, surface states, and surface dangling bonds. However,
the defects always exist to maintain energy minimization due to
an increase in entropy. Fermi level pinning in 2D semiconductor
materials is associated with vacancy defects [28,29]. Therefore, it
is crucial to prepare high-quality materials and minimize defects
as much as possible to prevent Fermi level pinning. Moreover, dur-
ing device preparation, defects such as atomic diffusion, strain, and
point defects may be generated, especially if the metal electrode is
prepared by deposition methods. The deposition process may gen-
erate defects, such as atom diffusion, strain, and point defects [30],
and form chemical bonds at the interface, causing metal-induced
gap states and interface dipoles [31–34]. Previous results indicate
a strong Fermi level pinning at the metal–semiconductor interface,
3

with pinning factors S of 0.11 and 0.07 for FETs based on mono-
layer MoS2 and MoTe2, respectively, after contact with the various
deposited metals [35]. Kim et al. [35] introduced the charge neu-
trality level (CNL), which is defined as the energy above which
the states of a neutral surface are empty, to quantify the Fermi
level pinning. The CNL of MoS2 and MoTe2 is 4.48 and 4.77 eV,
respectively (Fig. 5a). The Fermi level of MoS2 is pinned around
CNL near the conduction band, resulting in n-type conductivity
in FETs. The Fermi level of MoTe2 is pinned near the valence band,
indicating that MoTe2 FET has p-type conductivity.

A promising strategy to eliminate the Fermi level pinning effect
from deposited metal is to insert an insulating layer or graphene
[36–40]. Inserting an insulating layer creates a tunneling barrier,
which reduces the charge injection efficiency. Moreover, due to
its insulating nature, the band alignment of the insulator–metal
contact cannot be tuned by the electric field. Introducing a thin
h-BN film between the metal and MoS2 can overcome Fermi level
pinning and gate-dependent Schottky barriers (Fig. 5b), resulting
in relatively free-moving conduction and valence bands [37]. Gra-
phene, due to its strong tunability, serves as another viable buffer
layer [41]. Using graphene as a buffer layer in the metal-MoTe2/
WSe2 structure, a quasi-van der Waals contact is formed, signifi-
cantly reducing the SBH and activation energies of thermionic
emission, leading to excellent photoresponse performance
(Fig. 5c) [40].

Van der Waals structures allow metal–semiconductor contacts
without chemical bond formation, creating an almost perfect inter-
face free from Fermi level pinning and chemical disorder [42–44],
creating an approaching perfect interface free from Fermi level pin-
ning and chemical disorder [30,42]. This allows the SBH in van der
Waals structures to approach the Schottky-Mott limit, making
SBHs highly adjustable and determined by the work function of
metal (Fig. 5d). Despite the elimination of Fermi level pinning in
top electrodes formed by van der Waals contact, the PMMA
substrate can cause serious surface scattering of carriers. The



Fig. 4. (Color online) Interface gap states and corresponding theories. (a) A schematic of interface gap state model based on metal and n-type semiconductor interface. (b) The
various sources and the theories of interface gap states. (c) A schematic of interface gap state model based on metal and p-type semiconductor interface. q/m is the work
function of metal. q/Bn and q/Bp is Schottky barrier of n-type semiconductor and p-type semiconductor, respectively. dgap is the thickness of gap. Dgap is the potential drop in
interface gap. qvs is the electron affinity of semiconductor. qIs is the ionization energy of semiconductor.
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inevitable gap between metal and 2D semiconductors might result
in a tunnel barrier, lowering the charge injection efficiency. How-
ever, this tunnel barrier can be eliminated by choosing an appro-
priate metal. For instance, the tunnel barrier height is high when
indium (In) is chosen as the contact metal for MoS2 [45], but it is
eliminated when Ti or Mo is used as the contact electrode [46].
Wang et al. [47] explored the creation of van der Waals contacts
with low contact resistance in 3D metals and 2D semiconductors
by electron beam evaporation at low temperatures and deposition
rates. They successfully established ultraclean van der Waals con-
tacts between a 10-nanometer-thick indium layer, topped with
100-nanometer-thick gold electrodes, and a monolayer of MoS2.
The interface was atomically sharp, with no observable chemical
interaction, indicating the formation of van der Waals bond. Then,
they further employ intermittent electron beam evaporation to
maintain low temperatures and achieve high-performance p-type
devices [48]. These devices approach ideal van derWaals interfaces
without chemical interaction between Pd, Pt, and a few layers of
MoS2 and WS2. The obtained p-type FETs with van der Waals con-
tacts displayed several advantageous characteristics, including a
low contact resistance of 3.3 kX lm, high mobility value of
approximately 190 cm2 V�1 s�1 at room temperature, saturation
currents exceeding 105 A m�1, and on/off ratio of 107. Kwon
et al. [49] demonstrated the possibility to create interaction- and
defect-free van der Waals contacts between various metals and
2D semiconductors by a metal deposition process with an expend-
able selenium buffer layer. The p-type WSe2 field-effect transistors
using gold van der Waals contacts show stable performance. While
the performance is not superior to existing literature, this tech-
nique holds promise for mass device fabrication. Recently, Shen
et al. [50] delved into the zero SBH between semi-metallic bismuth
and semiconducting monolayer transition metal dichalcogenides
(TMDs), and achieve ultralow contact resistance of 123 Ohm
micrometers by sufficiently suppressing MIGS and spontaneously
forming degenerate states. Despite numerous attempts in van der
Waals contacted devices, the performance of these devices is still
hindered by quantum limit and contact resistance. Li et al. [51]
reported a significant breakthrough in reducing contact resistance
close to the quantum limit by forming strong van der Waals inter-
actions between semi-metallic Sb(0112) and monolayer MoS2, as
well as hybridization of M�S energy bands at the Fermi level. This
method realizes an ultralow contact resistance of 42Ohm
4

micrometres, an on-state current of 1.23 mA per micrometer,
and an on/off ratio over 108. These performance surpasses equiva-
lent silicon-based semiconductor technologies and meets the 2028
roadmap target. Another feasible stratagem to overcome the Fermi
level pinning of 2D semiconductors is edge metal contact, namely,
1D metal contact [17,52]. Using Pd or Au with high work function,
high-quality p-type dominant MoS2 FETs display that the hole
mobility is 330 and 432 cm2 V�1 s�1 at 300 K, respectively
(Fig. 5e) [17]. Fermi level pinning in multilayer MoS2 is highly
dependent on the depletion width and carrier density significantly
[52]. Due to the inhomogeneous charge distribution in the vertical
direction of multilayer MoS2, the Fermi level pinning generated in
the middle layer can be ignored, while the Fermi level pinning gen-
erated in the top and bottom layer can be achieved through 1D
edge Au contact. Electrons are injected into the upmost layer of
multilayer MoS2, while holes are injected into the inner layer
(Fig. 5f) [52].

3.3. Surface modification

The interface state in metal–semiconductor contact is challeng-
ing to avoid. Surface modification of semiconductors can poten-
tially alter the interface structure and interface dipole. For
instance, organic molecules can tune the electron affinity of semi-
conductors [53]. The electron affinity of GaAs(100) increases when
decorated with negative molecular dipoles, and decreases when
coated with positive molecular dipoles [54]. However, the residual
energy of sputtered metal atoms will damage the surface molecu-
lar layer, leading to the unstable of SBH [55,56]. Inorganic insulat-
ing materials with wide-gap semiconductors, such as BN [37,57],
HfO2 [58], SiO2 [59], Ta2O5 [38], TiO2 [60], AlOx [61,62], Ge3N4

[63,64], Si3N4 [4], MgO [65], and TaN [66], can reduce damage dur-
ing preparation of metal electrodes due to their high hardness.
These thin insulator materials in the metal-insulator-
semiconductor (MIS) structure function as the ‘‘Fermi level de-
pinning layer”, improving the interface behavior parameter. Conse-
quently, the SBH has a strong correlation with the work function of
metal [63]. Aside from acting as the insulator in the MIS structure,
the dipoles and trap sites on the surface of insulator can function as
dopants [27,67], and the Fermi level can be tuned [68,69]. Electron
doping from the insulator substrate can minimize the Schottky
barrier when SiO2 and h-BN are used as substrate (Fig. 6a) [69].



Fig. 5. (Color online) Fermi level pinning and pathways to overcome the Fermi level pinning effect. (a) Fermi level pinning at contact interface of metal and MoS2/MoTe2. The
interface state between metal and MoS2/MoTe2, including tunnel barrier, orbital overlap and defect states. Reproduced with permission from Ref. [35]. Copyright � 2017
American Chemical Society. (b) Schematics of cross section of Au-MoS2 contact directly and Au-BN-MoS2 contact. Reproduced with permission from Ref. [37]. Copyright �
2017, Springer Nature. (c) The diagrams of carrier injection for MoTe2 FETs before and after inserting graphene and BN. Reproduced with permission from Ref. [40]. Copyright
� 2018, Wiley-VCH. (d) Fabrication processes of WSe2 transistors using transferred metal and deposited metal. Reproduced with permission from Ref. [42]. Copyright� 2017,
Springer Nature. (e) Schematic diagram of the 1D edge metal contacted FETs. Reproduced with permission from Ref. [17]. Copyright � 2019, Wiley-VCH. (f) Schematics of
carrier injection at the edge of Au-MoS2 contact. Reproduced with permission from Ref. [52]. Copyright � 2019, American Chemical Society.
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The insertion of h-BN between MoS2 and SiO2 generates a signifi-
cant ‘‘dipole alignment effect”. This effect is characterized by the
interaction between the positive fixed charges of SiO2 and the neg-
ative image charges in the contact metal, leading to a reduction in
the work function of the contact metal and a lower effective SBH.

Additionally, the stoichiometric ratio of the insulator also influ-
ences the interface state and SBH. For example, interfacial-oxygen-
vacancies in the sub-stoichiometric high-j oxide render them n-
type charge transfer dopants [60,70]. The presence of oxygen
vacancies and uncompensated Ti atoms in sub-stoichiometric TiOx

(x < 2) creates donor states or bands near the conduction band edge
of MoS2 (Fig. 6b) [60], which is the mechanism of the n-type charge
transfer dopant. The effective Schottky barrier is significantly low-
ered by exploiting the doping effect of the sub-stoichiometric TiOx

(x < 2). However, ab initio density functional theory (DFT) verifies
that the doping effect disappears when the purely stoichiometric
5

high-j oxides act as substrate [60,71,72]. In addition to the doping
effect of substrate or top-gated materials, directly adding extra
materials into the 2D materials is another well-proven doping
method [73–75]. For instance, potassium (K) as a strong donor of
electron can realize the n-type charge transfer doping (Fig. 6c)
[73]. From the IDS–VGS characteristics of the device in a vacuum,
it can be seen that the electron conduction dramatically rises by
several orders of magnitude at the positive gate voltage after dop-
ing with K (see the right side of Fig. 6c). Besides n-type charge
transfer dopants, surface modification can also provide p-type
charge transfer dopants [75]. AuCl3, acting as the effective electron
acceptor, is commonly used as a p-type charge transfer dopant of
MoS2 owing to its large positive reduction potential [74,75]. Insert-
ing graphene and doping AuCl3 can provide a high concentration of
holes at the interface, leading to a downward shift of Fermi level of
MoS2 and lowering the SBH for holes (Fig. 6d) [75].



Fig. 6. (Color online) Semiconductor surface modification caused by substrate doping and directly adding extra materials. (a) The surface modification of semiconductor and
the corresponding energy-band diagrams with relevant schematics of monolayer MoS2 on h-BN and SiO2 under considering the substrate doping and dipole alignment.
Reproduced with permission from Ref. [69]. Copyright � 2016, American Chemical Society. (b) Crystal structure of ML MoS2 on the surface of rutile-TiO2. Reproduced with
permission from Ref. [60]. Copyright � 2015, American Chemical Society. (c) Schematic of a top-gated few-layer WSe2 n-FET by doping K. Transfer characteristics of a 3-layer
WSe2 device (L � 6.2 lm) as a function of K exposure time. The black curve is before doping, while the other curves from bottom to top are after 1-, 20-, 40-, 70-, and 120-min
doping. Reproduced with permission from Ref. [73]. Copyright � 2013, American Chemical Society. (d) Schematic diagram of a MoS2 device prepared by doping AuCl3.
Reproduced with permission from Ref. [75]. Copyright � 2016, Wiley-VCH.
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3.4. Image-lowering effect

Applying an electric field can induce an image-lowering (Schot-
tky) effect, creating an image force that lowers the SBH. This image
force stems from the Coulombic attractive force and electric field
force induced by the external electric field (Fig. 7a). The q/m (work
function of metal) is reduced to q/B(effective work function of
metal) due to the coupling effect of the Coulombic attractive force
and the electric field force (Fig. 7b), leading to the formation of a
bare Schottky barrier at the interface of metal and semiconductor.
The SBH is significantly lowered at a high external electric field due
to the image-lowering effect (Eqs. (3) and (4)) [76]. For metal and
n-type semiconductor systems, SBH will slightly increase when a
forward bias is applied, while the opposite result can be observed
under the reverse bias (Fig. 7c), indicating the SBH is bias depen-
dent [77]. The above theory is based on 3D semiconductors. How-
ever, lateral Schottky junctions based on 2D materials offer an
opportunity to approach a sharp Schottky barrier without interfa-
6

cial dipole potential and image-lowering effect [78,79]. Recently,
Yao et al. [79] designed the CrTe3/CrTe2 lateral in-plane Schottky
junction with an atomically sharp and seamless interface
(Fig. 7d). The sharpness of the Schottky barrier is evidenced by
dI/dV spectra of scanning tunneling microscopy across the junction
(Fig. 7e), clearly visualizing the profile of energy band bending and
SBH of 0.5 eV can be observed. A perfectly triangular-shaped bar-
rier, which is a typical characterization of a Schottky barrier, is
shown on the CrTe3 side of the interface (Fig. 7f). This lateral in-
plane Schottky junction with the atomically sharp metal-
semiconductor interface allows, in principle, a high carrier current
along the interface.

The intrinsic barrier height is q/Bn0. The barrier height at ther-
mal equilibrium is q/Bn. The lowering amount of Schottky barrier
under forward and reverse bias is qD/F and qD/R, respectively.

The xm and D/ can be given by

xm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q
16pesjEexj

r
; ð3Þ



Fig. 7. (Color online) Image lowering effect of Schottky junction. (a) Coulombic attractive force due to the induced image charge. (b) Schottky (or image lowering) effect at the
metal-vacuum interface. (c) Under different biasing conditions, the energy-band diagram of metal–semiconductor (n-type) interface after considering Schottky effect. (d)
Atomic structural of the CrTe2/CrTe3 Schottky junction along the direction of the orange arrow. (e) dI/dV conductance maps around CrTe2/CrTe3 Schottky junction. (f) A typical
schematic band diagram of Schottky junction. Reproduced with permission from Ref. [79]. Copyright � 2022, Wiley-VCH.
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D/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qjEexj
4pe

;

r
ð4Þ

where es is the permittivity of semiconductor, and Eex is external
electric field.

3.5. External electric field

The SBH can be modulated by the tuning location of the Fermi
level. In the case of the n-type semiconductor Schottky junction,
a positive gate-voltage applied around the Schottky junction will
lower the SBH, while a negative gate-voltage will raise the SBH
[80,81]. The opposite phenomenon is observed for the Schottky
junction formed by the p-type semiconductor.

In addition, the external voltage can also interact with the point
defect in semiconductors. The native point defects inevitably gen-
erated during the preparation of semiconductors can form a local-
ized field due to the deficiency of the bonding atom. When an
external voltage is applied to the oxide semiconductor, an interac-
tion occurs between the localized field and the generated electrical
field. The ionized oxygen vacancies (Vþ

O or V2 þ
O ) are generated by

trapping the hole in the localized field around the point defect or
exciting the unbound electron by an external electric field
(V0

O ! e þ Vþ
O, Vþ

O ! e þ V2 þ
O ) [82,83]. These ionized oxygen

vacancies can migrate owing to the electric force, and some direct
proofs of this phenomenon are found by transmission electron
microscopy [84,85], scanning transmission synchrotron X-ray
microscopy [86], and electron energy-loss spectroscopy [87]. For
Schottky device, the accumulation of ionized oxygen vacancies at
the junction interface is equivalent to applying a positive gate-
voltage to semiconductors, lowering the SBH for n-type ZnO nano-
wire devices and raising the SBH for p-type CuO nanowire devices
[88–90]. This phenomenon is more pronounced under high electric
field intensity. The high pulse voltage and low current properties of
7

the triboelectric nanogenerator (TENG) make it a safe and portable
high voltage power source. Meng et al. [88,89] systematically
investigated the SBH regulation of ZnO nanowire devices under
the high pulse voltage of TENG. They proposed a polarization
model for the changes in SBH after being impacted by the TENG
voltage (Fig. 8) [88]. The diffusion of ionized oxygen vacancies dri-
ven by the electrical force generated by TENG causes them to
aggregate at the junction around the interface, lowering the SBH
from /Bn0 to /Bn.

3.6. Light illumination

If the photon energy is high enough (hv � Eg), photoexcitation
generates the electron-hole pairs in depletion of the Schottky junc-
tion on the semiconductor side. These photo-generated electron-
hole pairs increase the electron or hole concentration in the con-
duction or valence band of semiconductors. As a result, the Fermi
level shifts upwards for Schottky junctions of n-type semiconduc-
tor and downwards for p-type semiconductors devices. The SBH
will lower owing to the energy band being bent in the opposite
direction by the rapid growth of electrons in the conduction band
and holes in the valance band [91–93]. The SBH change of n-type
(Fig. 9a and b) and p-type semiconductors (Fig. 9c and d) before
and after light illumination are depicted in Fig. 9. The reduction
of SBH can enhance carrier injection and transport at the metal–
semiconductor interfaces. This phenomenon is widely utilized in
photoelectron devices based on Schottky contacts.

3.7. Piezotronic effect

The piezotronic effect, which is a field established in 2007 [94],
tunes SBH and the carrier transport by piezopotential once a stress
is applied to a piezoelectric semiconductor [95–98]. In a Schottky
contact based on metal and piezoelectric semiconductors, the



Fig. 8. (Color online) Schematic diagram of polarization model and energy-band diagrams about the variation of SBH after impacting by TENG. (a) Schematic diagram of the
atomic structure of Ag-ZnO interface and band diagram of the corresponding Schottky junction. (b) Schematic diagram of oxygen vacancies diffusion and the change of SBH
after impacting by high pulse voltage of TENG. Reproduced with permission from Ref. [88]. Copyright � 2020, American Chemical Society.

Fig. 9. (Color online) Change of SBH under the light illumination. (a), (b) The change
of energy band for Schottky junction based on n-type semiconductor before and
after light illumination. (c), (d) The change of energy band for Schottky junction
based on p-type semiconductor before and after light illumination. The dashed line
in (b) and (d) is the position of conduction band and valence band under light
illumination, respectively.
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application of stress to the semiconductor results in static polariza-
tion charges that cannot be screened. It can modulate the SBH and
regulate the carrier transport at the Schottky junction (Fig. 10a and
b). The piezoelectric polarization charges act as a ‘‘gate voltage” to
tune the performance of the Schottky device, such as gas sensors,
biosensors, chemical sensors, photodetectors, and strain sensors
[99,100]. This highlights the potential of the piezotronic effect in
improving the functionality and sensitivity of various sensor
devices.

According to Schottky diffusion theory, when a strain is applied
to a Schottky junction of metal and piezo-semiconductor, the built-
in potential wbi can be expressed as

wbi ¼
q
2es

qpiezoW
2
piezo þ NDW

2
Dn

� �
ð5Þ

where q represents the element charge, es is the permittivity of ZnO,
qpiezo is the polarization charges density, Wpiezo is the width of
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polarization charges, ND is the donor concentration, and WDn is
the width of depletion region in n-type semiconductor.

The current density across the Schottky junction after piezo-
electric polarization can be determined by [101–103]

J ¼ J0 exp
q2qpiezoW

2
piezo

2eskBT

 !
exp qV

kT

� �
� 1

h i
; ð6Þ

where V is the bias voltage, kB and T are the Boltzmann constant
and temperature, respectively, J0 is the saturation current density,
and es is the permittivity of semiconductor.

In the case of Schottky junction, J0 is given by

J0 ¼ q2DnNc

kBT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qNDðubi0 � VÞ

es

s
exp � q/Bn0

kBT

� �
; ð7Þ

where Nc and Dn are the effective density of states at conduction
band and electron diffusion coefficients, respectively, /Bn0 and
ubi0 are SBH and built-in potential with the absence of polarization
charges.

When a stress is applied on the Schottky junction, the SBH can
be rewritten as

/Bn ¼ /Bn0 �
qqpiezoW

2
piezo

2es
: ð8Þ
4. Conclusion and perspectives

Adjusting the SBH is crucial for optimizing the performance of
metal–semiconductor device. This review presents the formation
theory of the Schottky barrier predicted by the Schottky-Mott rule.
We then overview static and dynamic approaches for SBH adjust-
ment. Static approaches include metal and interface gap. Dynamic
adjustment techniques for the SBH include surface modification,
image-lowering effect, external electric field, light illumination,
and the piezotronic effect. The mechanisms or theories corre-
sponding to these methods have also been discussed.

While the adjustment methods summarized in this review
cover the primary effective techniques, there are still many
challenges in further practical applications. More efforts and new



Fig. 10. (Color online) Schematic of energy-band diagram illustrating the piezotronic effect under the tensile strain (a) and compressive strain (b).
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technologies need to be introduced into further research to address
the challenges, such as the precise measurement of SBH, Fermi
level pinning, stability of adjustment methods, transparent
metal-like electrode, and low-resistance Ohmic contact.

The continuous progress of measurement technology, and more
precise and efficient methods for measuring the SBH are expected.
Currently, the value of SBH is indirectly obtained by the calculation
from the I-V curve. Direct measurement methods, such as scanning
tunneling microscopy, conductive atomic force microscopy, can
give an accurate value of SBH and help evaluate adjustment meth-
ods of SBH. Furthermore, the computational materials science,
such as DFT calculations, could assist in predicting the charge den-
sity, degree of hybridization and charge transfer at the interface. In
addition, the integration of machine learning and computational
materials science could potentially accelerate the discovery and
optimization of new methods for Schottky barrier modulation.

The inevitable Fermi level pinning induced by the interface gap
states makes it difficult to eliminate Schottky barriers. An effective
method to eliminate Fermi level pinning is to form van der Waals
contact in 2D material-based devices, whereas the existence of a
gap introduces a non-negligible tunnel barrier, leading to the high
contact resistance and the low efficiency of charge injection. Aim to
overcome the tunnel barrier, methods including edge contacts,
semi-metal contact, ultrahigh vacuum evaporation, low-energy
metal integration, hybridization of M�S energy bands at Fermi
energy, have been developed. While these methods can reduce or
eliminate the tunnel barrier, their limited industrial compatibility
restricts their widespread application. Therefore, further effort is
still needed to develop industry-compatible technologies that
meet the evolving needs of the semiconductor industry.

Another consideration is the stability of Schottky barrier modu-
lation in dynamic methods. The device performance will be com-
promised owing to the irreversible change in interface state
during the adjustment of SBH.

A transparent metal-like electrode plays a pivotal role in the
application of a photodetector or solar cell. Although materials
such as graphene, indium tin oxide, fluorine-doped tin oxide, and
aluminum-doped zinc oxide are potential candidates as transpar-
ent electrodes, there are relatively few options for suitable trans-
parent conductive electrodes to form the appropriate SBH or low
resistance Ohmic contact considering the rapid progress of pho-
todetectors and solar cells [104]. Future investigations should
focus on transparent metal-like electrodes with tunable work func-
tions and low resistance.

Achieving Ohmic contact or a zero Schottky barrier is vital for
the semiconductor industry. However, the interface defects intro-
9

duce the inevitable Fermi level pinning and Schottky
barrier, reducing the efficiency of charge injection. Effort is still
needed to pave the way for achieving low resistance Ohmic
contacts in next-generation semiconductor of transition-metal
dichalcogenides.
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