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ABSTRACT
Atrial fibrillation (AF) is a common and serious disease. Its diagnosis usually requires 12-lead electrocardiogram, which is heavy
and inconvenient. At the same time, the venue for diagnosis is also limited to the hospital. With the development of the concept
of  intelligent  medical,  a  wearable,  portable,  and  reliable  diagnostic  method  is  needed  to  improve  the  patient’s  comfort  and
alleviate the patient’s pain. Here, we reported a wearable atrial fibrillation prediction wristband (AFPW) which can provide long-
term monitoring and AF diagnosis. AFPW uses polyvinylidene fluoride piezoelectric film as sensing material and hydrogel as skin
bonding material,  of  which the structure and design have been optimized and improved.  The hydrogel  skin  bonding layer  has
good  stability  and  skin  affinity,  which  can  greatly  improve  the  user  experience.  AFPW has  enhanced  signal,  strong  signal-to-
noise ratio,  and wireless transmission function. After a sample library of 385 normal people/patients is analyzed and tested by
linear discriminant analysis, the diagnostic success rate of atrial fibrillation is 91%. All these excellent performances demonstrate
the great application potential of AFPW in wearable device diagnosis and intelligent medical treatment.
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 1    Introduction
Atrial  fibrillation  (AF)  is  a  common  arrhythmia  in  clinic,  whose
incidence rate  and prevalence rate  are  on the  rise  in  recent  years
[1, 2]. Epidemiological investigation of atrial fibrillation shows that
the  incidence rate  among residents  over  80 years  old  is  10% and
the  prevalence  rate  of  atrial  fibrillation  in  China  is  0.71%  [3, 4].
Moreover,  more  and  more  patients  may  lead  to  a  variety  of
complications,  including  cerebral  apoplexy,  heart  failure,  and
dementia, with high modality and disability rates [5, 6]. Due to the
extensive and serious harm of AF, the accurate diagnosis of AF is
particularly important [7]. The clearest diagnosis of AF is 12-lead
electrocardiogram  (ECG).  However,  research  shows  that
traditional ECGs are very likely to miss cases, for paroxysmal atrial
fibrillation (PAF) is  not always detectable [8].  Traditional 12-lead
ECG  is  too  heavy  and  inconvenient  for  persistent  monitoring.
Thus, wearable devices are developed to detect AF, such as Holter
monitors,  single-lead  electrocardiogram,  photoplethysmography

(PPG),  etc.  [9].  Nonetheless,  these  devices  do  not  meet  the
requirements  of  diagnosis  perfectly.  Holter  monitors  still  offer
limited duration of  continuous monitoring,  and Holter  monitors
are  not  completely  comfortable  for  patients  [10].  Single-lead
electrocardiogram  shows  its  limitations  when  analyzing  more
complex  rhythms.  PPG  decreases  in  analysis  accuracy  when
working on different  skin tones,  skin moisture levels,  and tattoos
[11].

Radial  pulse  wave  is  an  important  physiological  detection
signal,  which is  widely  used in  wearable  devices  [12].  Traditional
medical  diagnosis,  especially  in  China,  regards  radial  artery  pulse
as  most  conclusive  part  of  diagnosis  [13, 14].  Traditional  pulse
diagnosis requires extensive experience, which may not be judged
accurately  due  to  doctors’ subjective  consciousness.  Nowadays,
precise  measurement  of  pulse  wave  becomes  possible  using
different  types  of  sensors  [15].  The  further  effective  analysis  of
pulse  wave  signal  makes  it  an  important  physiological  signal  in
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modern  medicine.  Pulse  wave  has  the  same  excitation  source  as
ECG, which shows abnormal pulse wave when AF occurs, due to
insufficient  blood ejection and irregular  frequency [16].  Scientific
processing of collected pulse wave signals can effectively diagnose
AF.

Machine learning,  as the core of  artificial  intelligence (AI),  has
been used in medical diagnosis research. Through the method of
data processing and machine learning, the AF signals are possibly
to be identified without experienced doctors [17]. Selected features
are  extracted  to  import  into  machine  learning  model  for
recognition.  Unlike  traditional  data  analysis  methods,  AI-assisted
diagnosis  only  requires  presence  of  an  experienced  doctor  when
building  and  training  a  computer  model,  but  no  longer  when
using  model,  which  means  significant  savings  in  medical  and
human resources [18]. What’s more, the AI-assisted diagnosis will
not be as tiring as human, and results can be obtained in a short
time.  While  AI-assisted  diagnosis  cannot  be  used  as  the  gold
standard  to  identify  diseases,  it  can  still  be  used  as  a  recognition
tool with high accuracy [19].

Piezoelectric  nanogenerator  (PENG)  is  an  excellent  sensor
functional  module  because  of  its  ability  to  transform  small
mechanical signal into electrical signal through piezoelectric effect,
and shows potential application prospects in self powered systems,
wearable  electronics,  and  sensory  devices  [20].  Unlike  inorganic
piezoelectric  material,  polyvinylidene  fluoride  (PVDF)  is  flexible
and  ductile,  making  it  popular  when  designing  wearable  sensors
[20–23]. Moreover, PVDF preparation process is simple, the cost
is  low,  and  the  durability  is  excellent  [24–27].  In  order  to  make
PVDF fit the human skin better, the auxiliary materials with better
adhesion and fit are also considered. Hydrogels are widely used in
wearable  sensors  because  of  good biocompatibility,  degradability,
renewable, and other characteristics [28, 29]. Hydrogels are usually
composed  of  hydrophilic  polymer  networks.  These  polymers
make  the  hydrogel  surface  contain  a  large  number  of –OH,
–COOH, and –NH2 groups, which enable the hydrogel to be well
adsorbed  on  skin,  glass,  rubber,  metal,  and  other  surfaces  [30].
The  stability  of  hydrogel  is  poor,  and  it  is  difficult  to  maintain
excellent  performance  in  dry  or  low-temperature  environment
[31]. To solve these defects, the method of adding inorganic salt or
using  organic  solvent  aqueous  biphase  system in  the  preparation
process  of  hydrogels  is  usually  selected,  so  that  hydrogels  can  be
stable  in  dry  environments  by  improving  their  water  retention
performance [32, 33].

Here,  we  reported  a  wearable  atrial  fibrillation  prediction
wristband (AFPW) which can provide long-term monitoring and
AF diagnosis. AFPW consists of sensing part and supporting part.
The  sensing  part  is  based  on  piezoelectric  effect  and  thus  is  self-
powered. Moreover, the mechanical and electrical performances of
sensing parts  with different structure designs were measured and
compared.  It  can  receive  pulse  wave  signals  up  to  1.4  V  and  the
signal-to-noise  ratio  (SNR)  is  37  dB.  Furthermore,  an  AF
prediction  AI  model  was  built  after  machine  learning  a  sample
library  of  385  normal  people/patients,  and  91%  diagnostic
accuracy  is  obtained,  which  illustrates  excellent  potential  for
medical treatment and comfortable medical treatment.

 2    Results and discussion

 2.1    Material and structure
Figure  1(a) presents  schematic  illustration  of  AFPW,  which
consists  of  sensor  part  and  supporting  part.  Sensor  part  realizes
the  function  of  collecting  pulse  wave  signals,  which  contains
PVDF  piezoelectric  film,  polytetrafluoroethylene  (PTFE)
encapsulation  layer,  enhancement  layer,  and  hydrogel  adhesive

layer.  PVDF uses piezoelectric effect to convert pulse wave signal
into  electrical  signal,  which  is  the  functional  layer  of  the  AFPW.
PTFE  encapsulation  layer  protects  both  sensors  and  skin,  which
can maintain the sensor function for a long time and improve the
comfort  of  users.  What’s  more,  PTFE  encapsulation  layer  can
specifically  enhance  pulse  wave  signal  though  shows  average
performance  in  other  signals.  Young’s  modulus  of  PTFE
encapsulation  layer  is  close  to  skin,  and  it  is  speculated  that  the
high  matching  degree  of  Young’s  modulus  may  enhance  the
signal.  The enhancement  layer  is  three-dimensional  (3D) printed
and  consists  of  a  series  of  micro-pillars  with  a  spacing  of  1  mm
and a height of 2 mm. The comparison of pulse wave output with
or without enhancement layer is shown in Fig. S1 in the Electronic
Supplementary  Material  (ESM).  As  can  be  seen,  the  output  with
an  enhancement  layer  added  greatly  exceeds  the  output  without
an  enhancement  layer.  This  proves  the  important  role  of  the
enhancement  layer  for  output  enhancement.  The  enhancement
layer with designed structure is placed on the back side of PVDF
to  enhance  signal.  The  hydrogel  surrounds  the  whole  system
making the device fit  better and more comfortable with the skin.
Supporting  part  consists  of  Bluetooth  module,  polylactic  acid
(PLA) shell,  and rubber base.  Bluetooth module,  which made up
of  Bluetooth  and  battery,  transmits  signal  to  computer  or  cell
phone for further analysis. Bluetooth module used in this work is
HC-05. PLA shell protects and supports Bluetooth module within
it  and  sensors  below  it,  which  is  3D  printed.  Rubber  base
constitutes  the  main  physical  support  structure  of  the  bracelet.
Figure  1(b) shows  the  information  transmission  of  AFPW.  The
mechanical signal of pulse wave is converted into electrical signal
and  transmitted  to  the  processing  terminal.  After  machine
learning analysis, the judgments and expectations of probability of
illness are sent to medical staff for further treatment. As shown in
Figs. 1(c)–1(f), AFPW is as large as a watch while the sensor part
can fit human skin well.

Linear  discriminant  analysis  (LDA)  is  chosen  as  machine
learning analysis algorithm in this article. LDA is a classical linear
learning  method  which  uses  statistics  and  pattern  recognition
methods to try to find a linear combination of the characteristics
of  many  types  of  objects  or  events,  so  that  they  can  be
characterized or distinguished. In this work, the total sample size is
385.  Features  engineering  is  determined  by  the  characteristics  of
pulse  wave  signal  and  pathological  information  analyzed.
Important  parameters  of  signals  are  selected  as  features  such  as
average  value  and  peak  value.  The  accuracy  of  patient
identification is high (91%), and the clustering and distinguishing
are  good  (Fig. 1(g)).  It  is  noteworthy  that  the  undetected  rate  of
patients  is  only  1%,  which  means  diagnosing  AF  promptly  and
treating patients without delay. The complete diagnostic system is
presented in Fig. 1(h), which is established on AFPW. The sensor
part  collects  and  transfers  information  of  pulse  wave,  converting
mechanical signal to electrical signal. The analysis system receives
and processes  data,  then extracts  features  for  LDA model,  which
gives an automatic diagnosis of AF. The diagnosis and data will be
an import basis and criteria for doctors and patients.  It  is  helpful
for early diagnosis and timely treatment of AF.

Figure 2(a) shows the structure of sensor part and how AFPW
works  on  the  vessel  and  skin.  The  beat  with  pulse  is  transmitted
from blood  vessel  through  skin  to  the  sensor.  The  encapsulation
layers of PTFE amplify the pulse wave signal by appropriate elastic
property, while the enhancement layer also enhances the signal by
hard  base.  The  functional  layer  includes  PVDF piezoelectric  film
and silver electrodes on it,  which generate piezoelectric signal  for
further analysis. The operating principle of AFPW is shown in Fig.
2(b).  At  the  initial  state,  the  whole  system  is  in  resting  rate,  and
there  is  no  current  flowing  through  external  circuit.  When  the
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pulse  starts  to  beat,  the  deformation  of  PVDF  piezoelectric  film
generates  the  induced  charge  due  to  the  piezoelectric  effect.
Between  silver  electrodes  appears  potential  difference,  and  the
current flows in the external circuit, which can be monitored and
analyzed.  When  pulse  beat  reaches  the  peak  value,  the  voltage
extreme value generated by induced charge reaches the maximum.
After  the  extreme  value,  the  whole  system reverts  to  the  original
state  and  causes  a  reverse  flow  of  current  in  the  external  circuit.
This  process  will  continue  until  the  resting  state  is  restored.  The
COMSOL simulations of piezoelectric effect and deformation are
shown  in Figs.  2(c) and 2(d).  It  can  be  found  that  a  discernible
signal  is  generated  in  a  minor  deformation.  This  proves  that  the
tiny  pulse  wave  beating  can  produce  obvious  piezoelectric  effect
and can be  accurately  identified  and analyzed.  In  simulation,  the
electronic components are shown in Fig. 2(e). PENG sensor is the
key  part  of  the  whole  system,  which  collects  pulse  wave  signal.
Bluetooth  transmitter  and  battery  constitute  transmitting  part,
which  can  transmit  signal  to  receiver  for  further  analysis.
Bluetooth receiver and Arduino circuit  board receive signal  from
transmitting  part  and  present  it  to  signal  processor.  Bluetooth
transmitter  and  battery  are  inside  the  AFPW,  while  Bluetooth
receiver and Arduino circuit board are connected to the computer.
Figure  2(f) presents  circuit  diagram  and  how  circuit  realizes
functions.  Pulse  wave  signal  is  collected  by  sensor,  transmitted
through  Bluetooth,  and  pre-signal  processed  by  Arduino  Uno.
Figure  2(g) presents  the  relationship  diagram  of  the  force  and
electrical  signals  simulated  by  COMSOL. Figure  2(g) presents
positive  correlation  with  good  linearity  between  the
force–electricity  relationship  within  a  certain  range,  which
demonstrates the sensor’s  good ability to transform and transmit

pulse  wave  information  effectively  and  accurately. Figures
2(h)–2(j) show  the  open-circuit  voltage  (VOC),  short-circuit
current,  and  charge  transfer  amount  when  AFPW is  monitoring
pulse  wave  signal  directly,  which  showed  the  characteristics  of
electrical  signals.  The  peak  voltage  output  is  0.75  V,  the  peak
current output is 0.45 μA, and the single charge transfer amount is
28 nC, respectively.

 2.2    Characterization and optimization
To  enhance  signal  output  and  signal-to-noise  ratio,  multiple
parameters and structures of AFPW were measured and designed.
PVDF  encapsulation  layer  tremendously  affected  the  output  of
AFPW  (shown  in Fig. 3(a)).  When  the  thickness  of  front  side  is
0.24  mm  and  the  thickness  of  back  side  is  0.24  mm,  the  highest
output  is  reached,  which  are  the  best  parameters  for  pulse  wave
detection.  As  shown  in Fig. 3(b),  to  explore  the  optimal  aspect
ratio  of  PVDF  under  the  same  area  conditions,  different  aspect
ratios along the direction of blood flow (shown as a/b) were tested,
and  the  results  show  that  3:1  is  the  best  aspect  ratio  under  fixed
PVDF area. Figure 3(c) shows that PVDF thickness affects output
and  thicker  performs  better,  but  too  thick  PVDF  will  hinder
encapsulation  and  destroy  comforts  of  users,  so  the  thickness  of
110 μm is  chosen. Figure 3(d) shows a rapid applied stress  cycle.
In this cycle, the response time is 0.027 s, which is short enough to
reflect  real-time  details.  Besides,  the  well  match  of  the  applied
force and the VOC response has been verified, and its real-time and
quick response ability plays an important role in signal acquisition
and  processing. Figure  3(e) presents  good  linear  relationship
between  force  and  VOC,  with  a  coefficient  of  determination  of
0.98218, which means AFPW can collect force signals linearly and

 

Figure 1    Overview of AFPW. (a) Schematic diagram of sensor part and supporting part of AFPW. (b) Information transmission of AFPW. (c)–(f) Photographs of
AFPW. (g) LDA cluster distribution. (h) The design concept of AFPW.
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convert them into electrical  signals within a certain range.  Figure
S2 in the ESM explores the output variation under the action of a
smaller  range  of  forces,  and  it  can  be  seen  that  the  output  also
exhibits  good  linearity.  When  periodic  forces  are  applied  to
AFPW  (Fig. 3(f)),  electrical  signals  with  high  repeatability  are
collected  (Fig. 3(g)),  and  the  result  obtained  by  repeated  times  is
recorded  with  error  calculated.  The  signal  shown  in Fig. 3(g) is
triggered  by  a  force  of  the  magnitude  shown  in Fig. 3(f). Figure
4(a) shows  the  signal-to-noise  ratio  of  AFPW,  which  is  37  dB.

Good  signal-to-noise  ratio  can  reduce  interference  and  improve
signal  quality.  As  shown  in  Table  S1  in  the  ESM,  AFPW  shows
good signal-to-noise ratio performance in similar researchs.

In  order  to  enhance  comfort  and  fit  with  skin,  the  hydrogel
layer was used on the surface of  AFPW in contact  with the skin.
Hydrogel  has  great  advantages  in  mechanical  properties,  water
permeability,  air  permeability,  moisture  retention,  biological
activity,  biocompatibility,  etc.  Herein  hydrogel,  as  skin  affinity
adhesive  material,  closely  fits  with  skin  to  enhance  signal

 

Figure 2    Operating principle of  AFPW. (a)  The structure and materials  used of  sensor in AFPW. (b) The electric  generation principle of  AFPW. (c),  (d),  and (g)
COMSOL simulations of AFPW. (e) Circuit elements used by AFPW. (f) The circuit diagram of the AFPW. (h) The open-circuit voltage of AFPW. (i)  The short-
circuit current of AFPW. (j) Amount of transferred charge.
 

Figure 3    Output  improvement  due  to  different  designs  and  parameters.  (a)  Influence  of  different  thicknesses  of  encapsulation  layer  on  output.  (b)  Influence  of
different aspect ratios on output.  (c) Influence of different thicknesses of  PVDF piezoelectric film. (d) Response time of AFPW. (e) Relationship between force and
electricity. (f) and (g) Force and electricity performances of AFPW.
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reception. Figure  4(b) shows  strain–stress  curves  of  hydrogel,
which  represent  its  mechanical  properties  in  deformation  and
reverse  deformation.  When hydrogel  slides,  translates,  and  twists
with  the  skin  due  to  human  motion,  excellent  mechanical
properties  ensure  that  the  hydrogel  will  not  be  damaged  and
maintain its function. At lower strains, the loading and unloading
curves  basically  coincide.  Under  high  strain,  the  curve  exhibits
significant  hysteresis  loops,  but  the  residual  strain  is  only  40%.
This  shows  that  the  effluent  gel  has  good  mechanical  recovery
performance. Figure  4(c) shows  how  different  preparation
methods affect adhesion property. Different masses of CaCl2 (3.5,
4,  and  4.5  g  compared  with  standard  production  process  as
mentioned  below  are  applied  to  α,  β,  and  γ)  in  hydrogel
production  process  created  hydrogels  with  slightly  different
properties. Figure 4(c) shows how much force needs to be used to
lift the hydrogel from the skin. Figure 4(d) is filmed with contact
angle  meter,  which  shows  the  moment  of  hydrogel  pulling  up
from the skin. Certain adhesion can be observed between skin and
hydrogel. Adhesiveness is strong to fit skin, and is not too strong
to  injure  skin. Figure  4(e) presents  the  preparation  process  of
hydrogel. 2 g poly(vinyl alcohol) (PVA), 1 g poly(ethylene imine),
and 4 g CaCl2 were mixed in 9 mL of deionized water. Then, the
mixture  was  heated  in  a  water  bath  of  98  °C  for  2  h,  and  the
product was poured into the mold and freezed for 12 h to get the
hydrogel. Figure  4(f) shows  the  stability  of  AFPW.  After  20,000
periodic  tests,  the  output  of  AFPW  remains  almost  unchanged,
which  shows  great  stability.  Under  normal  circumstance,  the
beating  rate  of  the  atrium  is  approximately  60  to  100  beats  per
minute. In cases of atrial fibrillation, the beating rate of the atrium
may be very fast, reaching 400–600 beats per minute. Figure 4(g)
shows output of AFPW in different frequencies covering the heart
rates  of  normal  people  and  patients.  Their  outputs  are  relatively
consistent  in  the  whole  heart  rate  ranges,  which  shows  good
stability in frequency. In order to verify that the device output is a
piezoelectric  signal  rather  than  a  triboelectric  electrical  signal,
nylon was used instead of PVDF for testing, as shown in Fig. S3 in
the  ESM.  It  can  be  seen  that  no  obvious  signal  appeared,
indicating that the output of AFPW is a piezoelectric signal rather
than a triboelectric electrical signal.

 2.3    Signal processing and model establishment
The use of pulse wave signal  mainly has the following difficulties
[15, 34]:  (1)  The  signal  frequency  is  low.  Pulse  wave  signal
frequency  is  low  and  difficult  to  identify.  (2)  The  signal  is  weak
and  vulnerable  to  interference.  (3)  Signals  are  variable.  Different
people under the same conditions, or the same person at different
times,  will  show  different  pulse  wave  waveforms,  which  is  a
difficult problem in the analysis. (4) The amount of signal data is
large.  The  pulse  wave  signal  collected  in  clinic  needs  to  be
recorded for a long time. In order to record more information, the
sampling rate  will  also be increased,  and the amount of  data  will
be further increased. Problems of frequency and signal stability are
solved  by  precision  AFPW  sensor.  Signal  variability  needs  to  be
solved by long-term signal monitoring, which can be solved by the
portable  and  wearable  sensor  of  AFPW.  However,  long-term
signal  monitoring  increases  data  volume  and  aggravates  the
difficulty of manual data analysis.  In view of the large amount of
signal  data,  it  is  necessary  to  introduce  the  computer-aided
judgment  method  to  deal  with  the  huge  amount  of  data  that
cannot be processed by humans.

Data analysis is an important method to judge the condition of
the disease. Usually, this process is completed by doctors, but the
number of doctors is insufficient and the accuracy is limited by the
experience  of  doctors.  Therefore,  the  data  analysis  method  of
machine learning is introduced. Figures 5(a) and 5(b) show pulse
waves of normal people and patients with AF, respectively. As can
be seen, pulse waves of normal people are stable and regular, and
pulse  waves  of  patients  with  atrial  fibrillation  are  disordered  and
irregular.  The  waveform  of  pulse  wave  mainly  consists  of  two
parts,  which  are  progressive  wave  and  reflected  wave.  The  heart
emits  blood regularly  and intermittently,  and transmits  the  pulse
wave from the aortic  root along the arterial  system. The periodic
ejection  of  the  heart  leads  to  the  regular  pulsation  of  the  blood
pressure and the regular pulsation of the arterial wall. The rhythm
of the arterial  system will  directly affect the downstream adjacent
segment, making it also follow the periodic pulsation. As shown in
Fig. 5(c), this wave is called the progressive wave. In the process of
transmission,  there  is  a  reflection  phenomenon  of  human  pulse

 

Figure 4    Hydrogel performance and stability of AFPW. (a) Signal-to-noise ratio of AFPW. (b) Stress–strain curves of hydrogel under different loads. (c) Adhesion
properties of different hydrogels. (d) Adhesion effect of hydrogel photographed by contact angle measuring instrument. (e) Schematic diagram of fabrication process of
hydrogel. (f) Cyclic stability of AFPW. (g) Influence of frequency on output.
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wave.  These  waves  are  caused  by  the  collision  and  reflection  of
blood  and  blood  vessels.  Because  the  heart  beat  drives  blood
circulation, pulse wave contains various information about normal
beat  and  abnormal  beat,  which  can  be  recognized  by  signal
processing.  From the  perspective  of  hemodynamics,  the  pressure
wave  of  the  radial  artery  is  actually  transmitted  into  the  brachial
artery and reaches the radial  artery when the heart  contracts and
ejects  blood.  The  pathological  changes  of  some  blood  vessels  or
tissues  and  organs  will  lead  to  changes  in  the  regularity  of  pulse
waves,  which  will  affect  the  characteristics  of  pulse  waves.  The
pulse  of  atrial  fibrillation  will  have  obvious  irregular  beats.  In
typical patients with atrial fibrillation, the pulse rate is less than the
heart  rate.  Because  atrial  fibrillation  does  not  maintain  enough
blood volume of peripheral arterial pulsation, every time the heart
contracts, the pulse of atrial fibrillation is uneven. The proof of the
pulse  wave  and  the  formation  mechanism  prove  that  the  pulse
wave  contains  sufficient  information  of  cardiac  disease,  which
shows that AF can be analysed and diagnosed through pulse wave.

Here, LDA is used for data analysis and discrimination. LDA is
a  dimension  reduction  technology  of  supervised  learning,  which
means  that  each  sample  of  its  dataset  has  category  output.  The
basic idea of LDA is: Given the training sample set, try to project
the sample onto a straight line, so that the projection point of the

same sample is as close as possible, and the projection point center
of  the  different  samples  is  as  far  away  as  possible.  The  feature
extraction  of  the  sample  is  based  on  the  characteristics  of  pulse
wave  and  the  pathological  characteristics  of  AF,  and  multiple
characteristic  values  are  designed  for  comparison.  The  final
selected  features  include  average,  peak-to-peak,  maximum,
minimum, etc. As shown in Fig. 5(d), with the increase of sample
size, the accuracy has been greatly improved. In the analysis with
sample  size  more  than  200,  the  accuracy  rate  will  not  change
significantly,  indicating  that  the  experimental  sample  is  sufficient
for  LDA analysis.  Shown as Fig. 5(e),  in  the  overall  data  analysis,
the  error  mainly  occurs  in  the false  detection of  normal  patients,
which can be excluded by re-examination, and almost all the cases
of  AF  are  found,  which  is  extremely  important  in  large-scale
physical  examination.  The  overall  recognition  accuracy  is  up  to
91%.  Among  the  many  features  screened,  the  most  effective
features  are  listed  in Fig. 5(f),  of  which  the  average  and  peak
contribute the most to the analysis process. Figure 5(g) shows the
information  transmission  process  of  the  system.  The  heart
pulsation supplies  blood to  the  whole  body and carries  pulsation
information.  The  pulse  wave  signal  is  received  by  AFPW  at  the
wrist,  transmitted  to  the  processing  terminal  through  Bluetooth,
and then processed and analyzed at the terminal,  and the disease

 

Figure 5    Processing methods and results of machine learning. (a) Pulse wave of normal people. (b) Pulse wave of patients with AF. (c) The formation principle of
pulse  wave.  (d)  Prediction  accuracy  of  model  as  sample  size  increases.  (e)  Confusion  matrix  of  machine  learning.  (f)  Feature  importance  in  machine  learning.  (g)
Information transmission process of the system. (h) Patient information and the numbers of correct prediction and incorrect prediction.
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risk is obtained. Figure 5(h) shows the patient information and the
number  of  successful  identifications.  It  can  be  seen  that  the
recognition  success  rates  of  male  and  female  patients  are  both
high, the errors are mainly concentrated in the false detection part,
and the number of missed inspections is small.

 2.4    Materials and methods
Molds for the atrial fibrillation prediction wristband were designed
and  printed  using  a  three-dimensional  printer  (Raize  3D)  and
PLA printing supplies.  PVDF was  manufactured by  VKINGING
Co.,  Ltd.  For  wireless  data  acquisition  and  transmission,  a
commercial  Bluetooth  board  and  Arduino  Uno  were  used.  A
linear  motor  (LinMot  E1100,  Suzhou,  China)  was  utilized  to
continuously impart periodic mechanical traction to the AFPW to
maintain  the  operating  cycle.  A  Keithley  6517  electrometer
(Beijing,  China)  was  used  to  measure  the  electrical  signal  of  the
AFPW,  and  the  data  were  obtained  and  recorded  using  an
oscilloscope (LeCroy HDO6104, New York, NY, USA). A wireless
motion monitoring system based on a BMD101 board was used to
record  data  from  the  AFPW.  An  ESM301/Mark-10  system  was
used  for  the  cyclic  press–release  test,  and  a  Mark-10  force  gauge
was  used  to  detect  the  applied  force  and  corresponding
displacement under compression.

 3    Conclusions
In  summary,  we  reported  a  wearable  and  wireless  piezoelectric
disease  monitoring  bracelet  (AFPW),  which  can  automatically
analyze  the  wearer’s  pulse  wave  signal  and  calculate  the  wearer’s
risk  of  developing  atrial  fibrillation,  with  an  accuracy  of  91%.
Different  structures  of  AFPW  have  been  fabricated,  compared,
and optimized to enhance the sensor output. In order to enhance
the  fit  between  the  sensor  and  the  skin  and  receive  the  signal
better,  a  hydrogel  bonding  layer  was  added  and  improved.  The
improvement  of  material  and  structure  increases  the  output  and
stability  of  the  sensor.  Through  linear  discriminant  analysis  of  a
large amount of data, AFPW can effectively identify patients with
AF,  and  the  corresponding  mechanism  is  discussed.  The  sensor
can  be  carried  and  worn  easily,  without  any  impact  on  people’s
normal life. At the same time, it can be transmitted wirelessly and
judged automatically without occupying medical resources. People
can understand the results  without medical  experience.  Based on
the advantages of the sensor, 385 normal people/patient data were
tested and analyzed. The diagnostic accuracy is 91%, especially the
rate  of  missed  detection  is  extremely  low,  so  AFPW can  play  an
important role in the physical examination for a large number of
people.  Therefore,  AFPW is  of  great  help  in  the  diagnosis  of  AF
patients.  What’s  more,  because  the  pulse  wave  signal  contains  a
large  amount  of  cardiovascular  disease  information,  AFPW  has
the  potential  to  be  used  in  the  diagnosis  of  other  cardiovascular
diseases,  such  as  coronary  heart  disease,  cardiomyopathy,  heart
failure, etc. AFPW may be used in intelligent medical treatment in
the future.
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