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Abstract: This review mainly focuses on the surface functionalization approaches of titanium dioxide
(TiO2) to prevent bacterial infections and facilitate osteointegration simultaneously for titanium
(Ti)-based orthopedic implants. Infection is one of the major causes of implant failure. Meanwhile, it
is also critical for the bone-forming cells to integrate with the implant surface. TiO2 is the native oxide
layer of Ti which has good biocompatibility as well as enriched physical, chemical, electronic, and
photocatalytic properties. The formed nanostructures during fabrication and the enriched properties
of TiO2 have enabled various functionalization methods to combat the micro-organisms and enhance
the osteogenesis of Ti implants. This review encompasses the various modifications of TiO2 in aspects
of topology, drug loading, and element incorporation, as well as the most recently developed electron
transfer and electrical tuning approaches. Taken together, these approaches can endow Ti implants
with better bactericidal and osteogenic abilities via the functionalization of TiO2.

Keywords: TiO2; Ti implants; antibacterial properties; osteogenesis; functionalization

1. Introduction

Titanium (Ti) and Ti alloy are currently the most widely used orthopedic materials.
Their applications include micro-plates, micro-bone-screws, artificial bone joints, and fine
surgical instruments. Ti-based materials have many excellent properties, including low
density, high strength, corrosion resistance, good biocompatibility, magnetic compatibility,
and no allergic reaction after implantation [1]. However, biomedical applications of Ti
implants encounter a very important disadvantage; that is, Ti has no intrinsic antibacterial
properties. Infections may occur after Ti implant surgery, resulting in implant failure,
prolonged hospitalization, and increased cost to the health care system [2]. Microbial
infections in the bones lead to a condition commonly known as osteomyelitis. A long-term
and particular antibiotic medication is needed to cure it [3]. Production of implant material
is a complex process [1] that requires safety standards in terms of biological and mechanical
properties so that the health of patients may not be affected [4–7]. Ti and Ti alloys have
advantages over Mg, Co, and stainless-steel alloys because Mg, as a degradable metal,
cannot afford long-term service, Co has a high price, and stainless steel is not compatible
with clinical magnetic resonance imaging (MRI) examination.

Titanium dioxide (TiO2) is the native oxide layer of Ti. Although TiO2 does not have
intrinsic antibacterial properties, it brings many opportunities to improve the performance
of Ti as a biomedical implant. In the process of oxide layer formation on the surface of
Ti, various material treatment methods can be executed to obtain antibacterial properties.
In addition, it is convenient to form TiO2 nanostructures that have better osteogenesis
properties than Ti. In vivo, TiO2 may lead to better bone-implant contact by increasing
cellular activity [8] and collagen type I expression [9]. Furthermore, TiO2 is one kind of
semiconductor material with certain electronic and photocatalytic functions, which allows
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the development to find innovative methods to endow Ti implants with antibacterial
properties and better osteogenesis ability.

In this review, we will discuss the various functionalization approaches of TiO2 to
improve the performance of the Ti implant. The schematic diagram of this review is
illustrated in Figure 1. The functionalization aims to endow the implant with antibacterial
properties and enhance its ability to support osteogenesis. Apart from the well-established
approaches such as topology, drug loading, and element incorporation, this review also
discusses the most newly developed electron transfer and electrical tuning approaches.
TiO2 is a material extensively involved in the electronic and photocatalytic fields for its
ability to conduct electron separation and transfer. In recent years, it has been discovered
that electron transfer between TiO2 and biological cells can also occur, and electrical tuning
of TiO2 for the antibacterial properties is becoming possible. These novel approaches are
worthy of more attention and research devotion.
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2. Important Facts about Orthopedic Implant
2.1. Implant Failure

The success of bone surgical operations mainly depends on the quality of implantable
biomaterials. Implant success is mainly halted by the infections caused by post-operative
complications. Certain factors may lead to bacterial infections or even failure, including
extensive damage to local tissues, improper fixation, smoking, diabetes, chemotherapy,
irradiation, and inappropriate surgical techniques [10]. The implants may get an infection
from surgery equipment, medical staff, room atmosphere, or bacteria in the patient’s
blood. The outcome of these microbial infections sometimes becomes grave, leading to a
second surgery, amputation, or even death [11]. Implant infections are mostly initiated
by Staphylococcus epidermidis (S. epidermidis), Staphylococcus aureus (S. aureus), Pseudomonas
aeruginosa (P. aeruginosa), and Enterobacteriaceae [12].

Implant failure may occur at early or late stage [13]. Lack of osseointegration may lead
to early implant failure, whereas in late implant failures, osseointegration works well at the
beginning but decreases later due to disease and biochemical overload [14]. Researchers
have identified various reasons for implant failures, which include infectious and physical
damage [15]. Implant failures can be minimized by maintaining hygienic measures, caring
for physical damage, and regular review of implants.

Progressive bone loss occurs due to inflammatory lesions in the soft tissues associated
with the implants [13] and peri-implant disease [16]. Poor hygienic measures, unmanaged
diseases such as diabetes, and the use of corticosteroids in immune-compromised individu-
als may all lead to that situation [17,18]. Despite taking all necessary hygienic measures,
bacterial infections may still occur. Studies have suggested that joint infections may take
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place in 1% of primary and 3–7% of multiple surgeries [19,20]. Patients with multiple
surgeries have a higher risk of mortality and infection [19]. Implant infections and failures
are a large economic burden on the health system. In the US, it costs more than $8.6 billion
annually [19,21].

2.2. Fundamental Requirements of Orthopedic Implants

Bone is naturally composed of organic, inorganic, and collagen fibrils. The nano-hierarchical
structures give shape and mechanical strength to bones [22]. The structures include small
molecular amino acids forming tropocollagen helixes and nanoscale collagen fibers forming
a microporous network of bones (Figure 2a). There is a crucial interaction between surface
characteristics and the extracellular matrix for osteointegration [23]. Bone mesenchymal stem
cells (BMSC) in the bone marrow are known to typically respond to metallic implants with the
production of soft tissue rather than bone, which causes implants to fail [24,25]. Guiding stem
cell differentiation to a desired specific line on the surface of the material is a key factor in the
success of implants [26,27]. Osteoblasts are mature bone cells, whereas osteoprogenitor cells are
pluripotent cells having the capacity to differentiate into different kinds of cells. Osteoblasts and
osteoprogenitor cells are in direct contact with the implants.

For better outcomes, the hierarchical structures of the bone must be simulated by the
implant with surface nanostructures to support bone tissue regeneration (Figure 2b,c). Apart
from the surface nanostructures, other modifications, including nanoparticles, may help further.
For example, bismuth oxide (Bi2O3) has features including electrochemical stability, high bio-
compatibility, and a medium band gap [28,29]. The contact of Bi2O3 nanoparticles and TiO2
nanocones resulted in a heterojunction that formed a built-in electric field and promoted the
osteogenesis of BMSC on the basis of TiO2 nanostructures (Figure 2b) [30].
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implant in the bone defect; (ii) The electric field is built at the nanoscale interface of the implant.
Reprinted with permission from Ref. [30]. John Wiley and Sons, 2021. (c) Osteogenesis pathways
on TiO2 nanotubes in oxidative stress microenvironment brown arrow: enhancing the expression of
a downstream gene; green arrow: inhibiting the expression of a downstream gene. Reprinted with
permission from Ref. [32]. Elsevier, 2018.

3. Functionalization Approaches of TiO2 for Better Antibacterial and
Osteogenesis Property
3.1. Topological Influence of the TiO2 Nanostructures

Topological modification is among the proposed methods to achieve surface function-
alization. Studies have shown that surface nanostructure and topography may affect the
migration, elongation, proliferation, and differentiation of stem cells [33–35]. In fact, cells
and tissues in vivo will experience many topographic features ranging from nanoscale to
microscale [36]. Thus, building a surface nanostructure on implants is an important research
direction in the fields of artificial bones, joints, and dental implants [37–39]. The regulation
of cell fate by surface topography is carried out by direct contact with adhering cells.

It has been widely accepted to form TiO2 nanotubes on Ti surfaces by doing anode
oxidation (Figure 3a), and the annealing after anodization enhances the nanotube’s rough-
ness and osseointegration capability [40,41]. Cell behavior is affected by the diameter of
TiO2 nanotubes [40]. For instance, small nanotubes (30 nm in diameter) have been shown
to promote BMSC adherence without significant differentiation, while larger nanotubes
(70–100 nm in diameter) cause a dramatic lengthening of stem cells, which induces cy-
toskeletal stress and selective differentiation into osteoblast-like cells [42]. A diameter
of 70 nm is the optimum size of TiO2 nanotubes for osteogenic differentiation of stem
cells derived from human adiposity [43]. The diameters of TiO2 nanotubes are crucial for
surface roughness and hydrophilicity. Several studies have shown that increasing diameter
can increase antibacterial characteristics [44,45]. Ercan et al. found that nanotubes with a
diameter of 80 nm had more antibacterial properties than the 30 nm diameter nanotubes
against various strains of S. aureus due to higher hydrophobicity [46]. Other factors apart
from the diameter, including the length, the gap between walls, and crystal forms, also
influence the TiO2 nanotubes. Nano-engineered Ti prepared from hydrothermal etching
has also been reported to be effective against gram-negative bacteria, E. coli [47].
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well-established fabrication process of TiO2 nanotubes. (b) The enhanced differentiation of BMSC on
the nanorods. Reprinted with permission from Ref. [48]. John Wiley and Sons, 2016.

TiO2 nanorod, another TiO2 nanostructure, also significantly influences the BMSC
behavior [43]. The TiO2 nanorod array surface is very effective in regulating the differen-
tiation of BMSC towards osteoblasts. In another study, TiO2 ceramics were synthesized
and TiO2 nanorods were used to compare the BMSC cellular adhesion and self-renewal
characteristics when commercial culture plates were used as the control group [48]. All
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samples demonstrated good biocompatibility from day 2 to day 8, suggesting that TiO2
ceramic promotes cell adhesion, renewal, and cellular morphology (Figure 3b).

Increasing the average surface roughness of the implant promotes osteointegration
and is another topology-based surface modification [49]. The surface roughness enhances
protein adsorption and osteoblastic functions [50]. The inorganic coating may include
calcium phosphate/hydroxyapatite and certain peptides [51]. However, a thick layer
of calcium phosphate coating has poor stability [52]. To address this issue, biomimetic
strategies were devised, which have shown good versatility [49,53]. This coating has great
osteoconductive potential in vivo [54].

3.2. Drug Loading and Release Based on the TiO2 Nanostructures

Antibiotics are very effective at killing bacteria, but antibiotics taken by oral or mus-
cular injection have very low efficiency in treating infections in the bone. Localized drug
release from the implant surface can solve the problem. TiO2 nanostructures such as nan-
otubes and nanopores are highly facilitated to do drug-loading [49,50]. TiO2 nanotubes are
especially favored because of their larger surface area and one-end open feature [55]. The
drug delivery of the nanotubes is significantly affected by the fabrication conditions. It is
also found that drug release was promoted by increasing the dimensions (length, width,
and diameter) of nanotubes [56]. Loading into the nanotubes with infection-reducing
drugs, such as penicillin and streptomycin, largely improves the performance of titanium
implants [57,58].

By increasing the dimensions of the nanotubes, drug release was promoted, but
drug loss also increased during the rinsing process. To overcome this problem, periodic
structures in the nanotubes are prevented, which demonstrated a significant improvement
in the drug release control; the periodic structures largely reduced drug burst release from
77% to 50% and extended overall release from 4 days to more than 17 days [39].

The release control can also be improved by biodegradable layers (Figure 4a) [59].
Nanotubes can be coated with different layers of PLGA or CHI to improve drug release
control and osteoblast adhesion [60,61]. Aw et al. enabled the release control of water-
insoluble drugs by integrating TiO2 nanotubes with Pluronic F127 polymeric micelles and
biopolymer chitosan coatings (Figure 4b). They reduced the drug release burst from 77% to
39% and extended the overall release from 9 days to more than 28 days [60]. These results
suggest the great potential of a nanotube-based antibacterial system for sustained drug
delivery to combat chronic infection and inflammation after surgery.
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permission from Ref. [59]. Elsevier, 2015. (b) Polymeric micelles were used as nanocarriers and a
chitosan polymer layer was coated on top of the nanotubes to control drug release. Reprinted with
permission from Ref. [60]. Scientific Research, 2011.

3.3. Element Incorporation

Apart from biotics, the antibacterial property can also be promoted by introducing
antibacterial ions, such as silver (Ag), zinc (Zn), and magnesium (Mg) [62–66]. Jia et al.
reported a method to incorporate Ag nanoparticles into TiO2 microporous coatings using
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polydopamine [62]. A sustained release of Ag+ ions for up to 28 days was observed, which
endowed the Ti implant with long-term antibacterial ability. An additional trap-killing
of the bacteria was enabled with these Ag nanoparticles (Figure 5a). Negatively charged
bacteria were attracted toward the positively charged Ag nanoparticles and killed with
more efficiency. More Ag doping to TiO2 for better antibacterial properties can be found in
the literature [67–69].

Zn is an important trace element in the human body, and it has a pivotal role in DNA
synthesis, enzymatic activities, biomineralization, hormonal activities, and antibacterial
characteristics [70–74]. Zn doping in TiO2-based biomaterial has also been found to possess
excellent antibacterial activities and better cell-material interactions [75,76]. The bacterial
killing was due to the penetration of Zn2+ in the bacterial surface membranes [77].
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Figure 5. (a) The incorporation of Ag nanoparticles in TiO2 microporous structures to conduct
bacteria killing. a1: Releasing of Ag nanoparticles to kill the bacteria; a2: Killing of bacteria upon
contact with Ag nanoparticles at the TiO2 microporous structures; a3: Killing of the bacteria by
trapping them in the microporous structures. Reprinted with permission from Ref. [62]. Elsevier,
2016. (b) The incorporation of Mg into TiO2 nanotubes to achieve both antibacterial and osteogenesis
purposes. Reprinted with permission from Ref. [78]. American Chemical Society, 2019.

Mg is a microelement in the body and contributes to numerous cellular functions
including enzymatic reactions, proteins, and nucleic acid synthesis; it is also effective in
reducing inflammation and bone loss [79,80]. The incorporation of Mg can inhibit bacterial
infection and osteolysis. Yang Y et al. designed a surface with Mg incorporated into
the TiO2 nanotubes [78]. The surface demonstrated remarkable antibacterial properties,
enhanced cytocompatibility, and inhibited osteoclast genesis, both in vitro and in vivo. The
nanostructures and alkaline microenvironment during degradation were responsible for the
antimicrobial ability. The continuous release of Mg2+ suppressed the osteolysis via down-
regulation of NF-κB/NFATc1 signaling (Figure 5b). Mg doping has multiple therapeutic
effects; however, an alkaline environment may pose a serious challenge in clinical use.
Controlled release of Mg is the possible solution but needs further exploration [81]. Many
other studies support that Mg incorporation can enhance the antibacterial and osteogenesis
property of the implants [81,82].

3.4. Electron Transfer

In recent years, an antibacterial theory based on the electron transfer between the
material surface and the microbes has been proposed. Electron transfer is a common event
in the photochemical modulation of materials, as well as a fundamental event for the energy
generation of organisms [83]. A group of microbes can do extracellular electron transfer
spontaneously by transferring the electron outside the cells to environmental minerals [84].
However, using the electron transfer approach to inhibit implant infection is a quite new
topic [85].
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Vecitis et al. found that the antibacterial properties of single-arm carbon nanotubes
are closely related to their electronic state. With the same diameter and length, metallic
carbon nanotubes can cause severe deformation and collapse of the bacterial cells, while
those in a semi-conductive state have no antibacterial properties [86]. Faria et al. found
that the composite structure of Ag nanoparticles and graphene lamellae has a strong
bactericidal ability, but graphene lamellae itself does not, suggesting that the electronic
interactions between the substrate and the modified materials have a dominant impact on
the antibacterial property [87].

TiO2 also has complex interactions with the bacteria and osteoblasts via electron
transfer. TiO2 is a semiconductor, and biological cells can also be regarded as semicon-
ductors [88]. Once contacted, they form heterojunctions, which may involve electron
transfer. Therefore, functionalization based on the electron transfer property also in-
fluences the performance of TiO2 as an orthopedic implant. Au and Ag nanoparticles
or graphene sheets deposited on the TiO2 surface can endow TiO2 with antibacterial
properties [88–93]. On the Ag@TiO2 surface, electrons were stored on the Ag nanoparti-
cles, and induced valence-band hole (h+) accumulation, which caused cytosolic content
leakage of the bacteria (Figure 6a) [89]. On the Au@TiO2 surface, electron transfer was
due to the plasmon effect of Au nanoparticles, which captured the electrons in the res-
piratory chain on the living bacterial cell membrane and transferred them to the TiO2
substrate. Au@TiO2 formed the Schottky barrier, which prevented the return of electrons,
causing continued electron loss in the bacteria until death [91,93]. Similarly, graphene
coating resulted in a large increase in the electrical conductivity of TiO2 because of the
combination of the unpaired π electrons of graphene and the Ti atoms [94]. The enhanced
electron transfer from the bacterial cell membrane to the graphene-TiO2 interface leads
to bacterial death (Figure 6b).

Electron transfer also works for osteogenesis. Zhou et al. fabricated a SnO2–TiO2
heterojunction and hierarchical structure on the surface of the Ti implant [95]. The electron
transfer among the hierarchical Schottky barrier significantly improved the osteogenic
function of the cells around the implant both in vitro and in vivo (Figure 6c). In another
work, they constructed a layered double hydroxide (LDHs)–TiO2 heterojunction, which
promoted the transfer of holes in materials to the physiological environment, enhancing
the antibacterial effect of the implant [96]. Ning et al. generated a microscale electrostatic
field (MEF) by doing patterned NT (rutile) and IT (anatase) surface modifications on Ti [97].
The electron transfer between NT and IT zones formed a sustained built-in MEF, which
polarized the BMSC and activated the expression of osteogenic genes (Figure 6d). The MEF
greatly promoted bone regeneration around the implant.

Apart from TiO2, the Ti surface can also make electron transfer-based interactions
with the bacteria. In a study by Wang et al., Ag was implanted on the Ti surface using
plasma technology, and this modification changed the Ti surface from non-antibacterial
to antibacterial [93]. The bacteria-killing was not due to Ag+ ion release, but due to the
micro galvanic reaction at the nano interface between Ag nanoparticles and Ti substrate.
The reaction disturbed the process of electron transfer in the bacteria respiratory chain and
produced a large number of reactive oxygen species (ROS) in the bacterial cells, resulting
in their death (Figure 6e).
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Reprinted with permission from Ref. [89]. Elsevier, 2013. (b) The proposed mechanism explaining the
antibacterial property of graphene nanosheets-TiO2 coatings is based on the electron transfer at the
graphene-TiO2 interface. Reprinted with permission from Ref. [94]. Elsevier, 2020. (c) Illustration of
the enhanced osteogenesis performance of titanium by an electric cue offered by the built-in electrical
field of SnO2–TiO2. Topographic cue (red color arrow) and electric cue (blue color arrow) enhance the
in vivo osteogenesis process (green color arrow). Reprinted with permission from Ref. [95]. American
Chemical Society, 2018. (d) Demonstration of the mechanisms to generate MEF and the interactions
between MEF and stem cells. Reprinted with permission from Ref. [97]. Springer Nature, 2016.
(e) The electron transfer-based bacteria killing on the Ag@Ti surface. Reprinted with permission from
Ref. [93]. Elsevier, 2017.

3.5. Electrical Functionalization

Based on the electron transfer mechanism of the above studies, researchers have further
developed an innovative method to make the TiO2 surface obtain antibacterial properties
through electrical tuning. In the beginning, it was found that an alternating current (AC) of
about ±2 µA applied to the ZnO nanowires in a physiological solution could significantly
improve the antibacterial property of ZnO after the current was removed (Figure 7a). The
“sustained bacteria sterilization” was different from the “instant bacteria sterilization”
because the latter was due to electroporation when AC was applied to the nanowires, but
the former was due to surface functionalization by the electrical tuning [98]. After that, a
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2 V low-voltage direct current (DC) power supply was used to conduct electrical treatment
on the Ti plate with a TiO2 layer in the culture medium for 20 min. This DC tuning also
changed the TiO2 surface from non-antibacterial to highly antibacterial [99]. After the
electric tuning, TiO2 gained a strong ability to kill various bacteria and showed strong
inhibition of biofilm formation. Meanwhile, the DC-tuned TiO2 surface had no negative
effect on the osteoblast. The adhesion and proliferation of the cells were found to be as
effective as those on the control TiO2 surface (Figure 7b).
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Ref. [99]. Springer Nature, 2018.

4. Conclusions and Perspectives

In summary, Ti implants have a major concern regarding microbial infection, which
may lead to implant failure. Various approaches have been carried out to deal with in-
fections and promote osteointegration. TiO2 is not only the native oxide layer of the Ti
biomedical implant but also a material widely studied in the photoelectronic and photocat-
alytic fields. Meanwhile, it is relatively easy to form nanostructures in the fabrication of
TiO2 layers. Due to these properties, TiO2 has enabled various functionalization approaches
to endow Ti with bactericidal and osteogenic abilities. In this review, we have discussed
both the well-established and the newly-proposed approaches for TiO2 functionalization.

Topology, drug loading, and element incorporation are well-established approaches
that have been developed for years. In some circumstances, the functionalization efforts
may have conflicts. For the topological approaches, it is sometimes difficult to enhance
the bactericidal and osteogenic properties at the same time because the topographies that
can encourage BMSC and osteoblasts adhesion and proliferation will attract bacterial
adhesion as well. In the ionic release approach, sometimes the released ions will harm
the cells. However, innovations can still be made on the well-studied topics to overcome
the problems they face. For example, nanoparticles can be used to help the TiO2 surface
nanostructures, not from the aspect of topologies but by introducing a built-in electric field.
Drugs can be incorporated into polymeric micelles, which may have more controllable
behavior during the loading and releasing process. Metal ions such as Mg2+ and Zn2+ are
found to have both bactericidal and osteo-enhancing properties; thus, incorporation of
these elements into TiO2 via proper methods will be very helpful for Ti implants.

The electron transfer approaches are newly proposed in recent years. TiO2 is a material
deeply involved in the electronic and photocatalytic fields for its ability to conduct electron
separation and transfer. In the studies we discussed above, electron transfer between TiO2
and the biological cells also takes place and demonstrates advantages in balancing the
two needs of the implant. Most of the electron transfer studies have declared that their
approaches only have a killing effect on the bacteria but no adverse effect on the growth
and differentiation of the osteoblasts. Based on electron transfer theory, the electrical tuning
of TiO2 for anti-bacterial properties has also demonstrated success. However, the under-
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lying mechanisms of the electron-based interactions of TiO2 with biological cells are far
from explicit.

Most of the functionalization approaches are promising for clinical applications, as
long as batch production can be realized and the production cost can be reduced. The
electrical tuning method, however, needs extended evaluation because it involves in vivo
electrical manipulation apart from material implantation. Whether the tuning parameters
are safe for the body and their impacts on the surrounding biological systems are yet to
be discovered. Of course, more animal experiments and clinical trials are needed for all
approaches to translate them into human benefits.

In the future, it is welcome to conduct in-depth research on the bactericidal and
osteogenesis mechanisms of the functionalization approaches to obtain a deeper under-
standing of the interactions among the implant surface, bacteria, and cells. This will enable
researchers to design the functionalization methods more effectively and rationally and
facilitate the clinical applications of Ti-based implants with more safety and convenience.
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