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Abstract
Artificial intelligence-enhanced skin-like sensors based on flexible nanogenera-
tors have been widely used in physiological signal acquisition, artificial organ,
sensory simulation, human movement status recognition, and other biomedical
related fields due to their excellent biocompatibility, comfortable wearing expe-
rience, high sensing accuracy, and low power consumption. In this paper, the
working principle, evolution process, and several established general strategies of
artificial intelligence-enhanced skin-like sensors are summarized in detail. More
importantly, this paper further reviews several recent important advances on arti-
ficial intelligence enhanced skin-like sensor, and systematically analyzes and
compares these works according to their principles and application directions.
In the discussion section, we also list the current concerns of stress adapta-
tion, stretchability–conductivity, algorithm optimization, function integration,
and propose potential solutions to these problems. We hope that the deep inte-
gration of artificial intelligence and flexible nanogenerators can bring more
enlightenment to the progress of biomedical engineering in the future.
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1 INTRODUCTION

Skin-like sensors (SLSs) are a new type of electronic
device that can sense external pressure, temperature, and
humidity by simulating the real skin. SLSs mainly contain
special geometric designs or are made by flexible organic
materials, and their specific fabrication strategies include
implanting conductive fillers on flexible substrates, apply-
ing conductive polymer hydrogels, and encapsulating liq-
uid metals. SLSs have been widely used in the field of
health monitoring, including body fluid sensing,1 bioelec-
tric signal sensing,2,3 and biomechanical signal sensing.4,5
For example, Pu et al. developed a flexible transparent sen-
sor based on triboelectric nanogenerator (TENG), which
can effectively capture blink motion with ultra-high sig-
nal level.3 In addition, a large number of neuromimetic
devices have also been derived based on the SLS signal
transmission method.
Due to the demand for energy supply and high-precision

sensing, the design of SLSs has gradually incorporated
novel micro-nano devices, among which nanogenerator
(NG)-based SLSs have become an important branch. NG
is a device that can harvest mechanical, thermal, and
other forms of energies from the environment and con-
vert them into electrical energy outputs. Generally, NGs
can be classified into three categories: TENG, piezoelectric
nanogenerator (PENG), and pyroelectric nanogenerator
(PrNG), among which TENG has a wider range of appli-
cations due to its advantages of simple structure, easy
fabrication, and inexpensive cost.6 Based on these supe-
riorities mentioned above, TENG has currently become
a research hotspot in the field of energy harvesting and
sensors. On the one hand, TENG, as a self-powered
device, can replace traditional power generation or energy
storage equipment, especially in specific application sce-
narios with high difficulty in battery replacement (such as
pacemakers7) and expensive maintenance expenses (such
as sensors in the outdoor environment8). On the other
hand, in addition to power supply, TENG has low power
consumption, high sensitivity, and high stability of elec-
trostatic induction capability, and can also be used as a
self-powered sensor to monitor the natural environment
and human activities. NG has a wide range material selec-
tivity; whether it is a flexible polymer material, a liquid
ionic conductor, or even a liquidmetal, it can be used as the
friction layer material of the NG. In addition, NG has mul-
tiple workingmodes and various structural designs, which
can meet the needs of SLS in both structure and function.
Therefore, when the concept of NG was first proposed, it
has been realized that NG as an SLS has great research
significance and application value.
NG-based SLSs enable long-term uninterrupted mon-

itoring; however, the consequent generation of large

amounts of data increases the difficulty of processing and
analysis. To date, artificial intelligence (AI) has been grad-
ually used in the research of physical sciences, and its
powerful signal processing and data analysis capabilities
are suitable for solving regression or classification prob-
lems that SLSs need to solve. As an emerging branch of
computer science, AI is a technical science that studies
theories, methods, and applications for simulating and
extending human intelligence. The term AI has been
developed for 65 years since it was first proposed by
John McCarthy and Marvin L. Minsky at Dartmouth
College in 1956.9 However, the development process of
AI was not smooth. Restricted by material science and
mathematics, the development of AI has been at a low
point for a long time. In recent years, due to the sig-
nificant improvement of computing power, the develop-
ment of AI has entered an explosive period, and it has
been widely used in the fields of identity recognition,10,11
smart medical,12 and smart cities.13 SLSs lack effective
means to process and analyze data, while AI requires
big data to build accurate, anomalous-resistant models.
The combination of these two technologies will greatly
expand the application functions and performance of SLSs,
thereby promoting the development and practical value
of AI.

2 FUNDAMENTALS AND
ESTABLISHMENT STRATEGIES

2.1 The principle and classification of
nanogenerators

The concept of NG was first proposed in 2006 by Professor
Zhong-Lin Wang, who fabricated the first PENG based on
zinc oxide (ZnO) nanowire arrays.14 Materials with piezo-
electric effect, such as ZnO and polyvinylidene difluoride
(PVDF), are used in PENG. Piezoelectric materials must
satisfy two preconditions: one is that a single unit can
generate a dipole moment under mechanical loading; and
the other is that it should have an oriented and ordered
internal structure. Therefore, some special preparation
or processing methods are required to obtain materials
with piezoelectric effect. For example, PVDF films need
to be polarized, and ZnO requires directional growth to
obtain nanowire arrays. As the most classical piezoelectric
material, when subject to amechanical load perpendicular
to the substrate, their positive and negative charge centers
of ZnO are shifted, and a piezoelectric potential is gen-
erated macroscopically at the tip of the ZnO nanowires.
Mechanical loads in different directions (such as stretch-
ing and squeezing) lead to opposite induced potentials
(Figure 1B).
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F IGURE 1 The working principle of nanogenerator (NG). (A) Four working modes of triboelectric nanogenerator (TENG). (B) The
working principle of piezoelectric nanogenerator (PENG). (C) Features and advantages of NG. (D) The major source form of NG energy

TENG was also first proposed by Prof. Zhong-Lin Wang
in 2012.15 TENG is an energy-harvesting device based
on triboelectrification and electrostatic induction effects,
which efficiently convertmechanical energy into electrical
energy withMaxwell’s displacement current as the driving
force. Due to the difference in ability of the twomaterials to
acquire electrons, the surfaces of the two friction layerswill
carry equal amounts of opposite charges after contact and
separation. This phenomenon is called triboelectrification.
The phenomenon of electrostatic induction occurs when
the sensing layers, which are closely connected with the
friction layers, are connected by an external circuit. With
the contact and separation of the friction layer, the inter-
nal charges of the induction layers will be redistributed,
resulting in the generation of an induced current.6 TENG
can be divided into four categories based on the con-
tact method of the two friction materials and the external
circuit connection method.: vertical contact-separation
mode, lateral sliding mode, single-electrode mode, and
freestanding mode (Figure 1A). NG has the advantages
of self-powered, high-voltage output, and a wide range of

material selection in the fields of environmental energy
harvesting and real-time signal sensing (Figure 1C).16 NG
can harvest a wide range of mechanical energy, includ-
ing acoustic energy, blue energy,17 and motion energy
of living organisms (Figure 1D), and has great applica-
tion potential for infrastructuremonitoring,9 physiological
signal collection,16 and human–computer interface.18–20
Since NG can be manufactured from materials with good
flexibility and biocompatibility, it is suitable for use in
wearable and implantable devices.21

2.2 Definition of artificial intelligence
and common algorithms

AI is a branch of computer science that enables computers
to accomplish complicated tasks like humans.22 There are
some technical terms in the field of AI, such as machine
learning (ML), neural network, and deep learning (DL),
which are confusing and highly related, but not inter-
changeable. As shown in Figure 2A, AI is a large research
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F IGURE 2 Detailed introduction of artificial intelligence (AI). (A) Diagram of the relationship between AI, machine learning (ML),
neural networks, and deep learning (DL). (B) Common characterization diagrams of AI. (C) Rectangular tree diagram for AI algorithms

field;ML is a goal of AI and providesmany algorithms; and
neural network is a successful and widely used algorithm
in ML. As a part of the neural network, DL is currently a
research method with broad utilization.
Specifically, ML allows computers to learn directly from

data features and build mathematical models to per-
form specific tasks without understanding the inherent
logic between features and labels.23 ML has been main-
stream since 1980s and is currently applied to most daily
life scenarios, such as spam identification,24 personal-
ized search.25 Neural network is a specific method for
realizing ML tasks.26 It is a network structure composed
of many simple neurons. This network structure, simi-
lar to the biological nervous system, is used to model
the relationship between input layers and output layers.
In 1986, Rumelhart et al. proposed a multilayer network
backpropagation (BP) algorithm.27 BP algorithm is cru-
cial and is the theoretical basis to neural network. From
model to algorithm, the BP algorithm promotes neural
network research and lays the foundation for the com-
mercialization of neural network computers. DL is the
latest research achievement based on neural network opti-
mization. In the early stages of neural networks, only
very shallow and small networks were used in applica-
tions. With the increase of generated data and computing
resources, and the continuous development and opti-
mization of algorithms, the number of layers of neural
networks is increasing, and the learning difficulty is also
improved.

Hinton first proposed the concept of a deep belief net
(DBN) in 2006, pushing DL into academia and making it
a popular research direction in the current AI field. DL is
essentially a multi-layer neural network; but in practice,
its effect is superior to that of traditional neural networks
and does not involve feature engineering. By increasing
the number of layers of neural networks, the steps of arti-
ficial feature extraction can be avoided, and the feature
extraction differences caused by individual cognitive dif-
ferences can also be eliminated. In addition, DL is highly
adaptable and easy to transfer, which can be more easily
applied to different fields and applications. However, DL
is not a panacea. In order to achieve high performance,
DL requires very large datasets. Because DL techniques
are inextricably linked to large amounts of training data,
large-scale DL system usually necessitates millions of
data.28 Formany applications, such large datasets are time-
consuming, expensive, and difficult to gather. Therefore,
for smaller datasets, traditional ML techniques are usually
preferable to DL algorithms.
As shown in Figure (2B), the commonly used method

for AI to improve the convergence accuracy is iteration. AI
is mainly used to solve clustering problems, and the accu-
racy of the algorithm is intuitively displayed through the
confusion matrix. As shown in the rectangular tree dia-
gram (Figure 2C), the algorithms commonly employed in
AI are counted, and the area of this figure represents the
number of times the algorithm is used. Most researchers
used support vector machine (SVM), convolutional neural
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F IGURE 3 Composition of skin-like sensor (SLS). The
software technology and hardware technology involved in the SLS

network (CNN), and BP neural networks as their primary
approaches in the field of NG.

2.3 Establishment strategies of artificial
intelligence-enhanced skin-like sensors
based on flexible nanogeneratorss

The establishment strategies of SLSs are inspired by
the tactile information transduction pathway. The tactile
information transduction pathway is divided into the fol-
lowing steps. First, it needs to perceive external stimuli
through various tactile sensors on the skin surface, such
as Merkel cells, Meissner corpuscles, Ruffini corpuscles,
and Pacinian corpuscles. Second, it needs to transmit this
information to the tactile perception center of the brain
through nerves, and finally the brain will use this infor-
mation to comprehensively judge the size, texture, and
temperature of the contacted object (Figure 3). Similarly,
the SLSs, or more precisely, the skin-like sensing system,
is also composed of two parts. One part is the hardware
side responsible for collecting sensor signals, and the other
part is the software side responsible for processing the col-
lected information andmaking comprehensive judgments.
The constructed skin-like sensing systems usually use var-
ious types of sensors to collect signals, which are based on
different principles, including optical sensors,29 piezoresis-
tive sensors,30,31 capacitive sensors,32,33 TENG13,34–36 and
PENG.37 The software side is based on AI as the brain to
realize comprehensive analysis and judgment (Figure 4).
To more intuitively demonstrate the connection and

research status between NG, AI, and SLSs (more broadly,
electronic-skin). We used VOSviewer to plot citations and
keywords based on the citation information from the web
of science. The size of the bubble represents the refer-
ence frequency of the article, and different colors reflect
different clusters. If these articles are frequently cited by

F IGURE 4 Schematic diagram of typical artificial intelligence
(AI)-enhanced flexible skin-like sensor (SLS) system and tactile
conduction pathway

other publications, they would be closer in distance and
color in the figure.38 As shown in Figure 5, the three dif-
ferent colors cluster generally represent different types of
research directions. AI obviously occupies a large propor-
tion, indicating that there aremany research works related
to AI. The distance between NG and electronic skin is rel-
atively close, and the dense connection lines between the
two clusters indicate that the two disciplines have a strong
combination. According to this method, scholars can intu-
itively observe the current research hotspots, understand
the possibility of combining different technologies, and
find a settlement point of the specific combination.
This work reviews recent research progress in the inter-

section of AI, SLSs, and flexible NGs (Table 1), which can
be summarized as the following commonalities. First, in
terms of application scenes, the AI-enhanced, NG-based
SLSs have promising prospects in handwriting recognition,
image recognition, smart glove, and human behaviormon-
itoring. Second, SVM, BP neural network, and CNN are
very compatible with NG, and all algorithms are widely
accepted by researchers. Third, in order to adapt to dif-
ferent application scenarios, the most suitable algorithms
are selected, these typical workingmodels have good accu-
racy. Some models adopt pre-training methods, and some
studies even use more than two algorithms for compari-
son. Fourth, for the selection of NGs, the use of TENGs
dominates in these works. The typical TENG positive elec-
trode friction layer is generally made by copper, because
it is easy to lose electrons and has good electrical con-
ductivity. Polydimethylsiloxane (PDMS) and polytetrafluo-
roethylene (PTFE)with higher electronegativity arewidely
used in the negative electrode friction layer. Finally, in the
selection of the TENGworking mode, most studies choose
the vertical contact separation mode TENG because of
its simple structure, ease of preparation, and excellent
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F IGURE 5 Citation and keyword co-occurrence map of artificial intelligence (AI), nanogenerator (NG), and electronic skin

output performance. It is also a good idea to design a
TENG that can integrate the two kinds of sensors, which
can further expand the scale of data collected. Through
mass deployment of sensors, with long-term monitoring
for days, weeks, or evenmonths, intelligent algorithms can
get enough data for adequate training and optimization. It
is foreseeable that AI technology and TENG can support
each other in the development process, and there will be
a wider combination in the human–machine interaction
application.

3 APPLICATIONS

3.1 Skin-like sensors for physiological
signal acquisition

Physiological signals are a valuable source of data that
contribute to the early disease prevention, treatment, and
prognosis rehabilitation.39 For example, cardiovascular
disease is one of the leading causes of death in humans,
with 18.6 million deaths per year (in 2019),40 which
accounts for 48% of non-communicable diseases deaths.41
According to statistics, at least 80% of heart disease deaths
can be avoided through human intervention,42 so contin-
uous monitoring of physiological status and timely early
warning are very necessary.
NG-based SLSs have the functions of mechanical sig-

nal detection and energy harvesting, and can detect
physiological signals such as respiration, heart rate, and
pulse.43–46 As implantable electronic devices, NG-based
SLSs have great advantages, which are very suitable for
early monitoring of disease and continuous monitoring

during the recovery phase.47 Inspired by the light-emitting
mechanism of animal skin and spiders, Zhao et al.
developed an SLS based on ultrasensitive self-powered
mechanoluminescent TENG.45 The SLS possessed ultra-
high sensitivity (gauge factor, GF = 3.92 × 107) with a
strain detection limit of 0.001%, response time as low as 5
ms, and cycle stability greater than 45,000. These excellent
performances enabled accurate pulse measurements. The
SLS could measure the pulse waveforms of the brachial
artery, carotid artery, temporal artery, and fingertip artery
etc. in detail. In addition, The SLS successfully performed
continuous, stable non-invasive pulse monitoring of the
radial artery for 400 s. This has important implications
for the long-term detection and diagnosis of cardiovascu-
lar disease (Figure 6A). Zhang et al. developed an ultrathin
stretchable single electrode mode TENG (S-TENG) com-
posed of carbon black/thermoplastic polyurethane with
∼646% stretchability, a thickness of ∼50 μm and slight
mass of ∼62 mg.46 S-TENG acted as an SLS and exhibited
high perceptual resolution when recording normal pulses,
and it could clearly distinguishing subtle peaks from radial
artery pulse waveforms (Figure 6B). Das et al. fabricated a
low-cost TENG-based SLS with sensitivity of 7.697kPa−1,
detection limit of ∼1 Pa, response time below 9.9 ms,
and stability over 4,000 compression-release cycles.44 The
designed SLS clearly measured the pulse waveforms from
human fingertips (Figure 6C).
Considering the above achievements and related

research status, NG can be considered as an effective
method for physiological signal monitoring. Among them,
the vast majority of SLSs are based on TENG, because
TENG has more diverse material choices and device
design options compared to PENG. In the future, it is
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F IGURE 6 Application of for physiological signal acquisition in skin-like sensors (SLSs). (A) Photonic–electronic smart skin with many
bio-inspired functions for visual and self-powered sensing and ultrasensitive health monitoring. Reproduced with permission,[45] Copyright
2021, Wiley-VCH GmbH. (B) An ultrathin stretchable triboelectric nanogenerator (TENG) improved by post charging electrode material.
Reproduced with permission,[46] Copyright 2021, American Chemical Society. (C) A flexible self-powered pressure sensor for sensing finger
pulse and human motions. Reproduced with permission,[44] Copyright 2019 Tsinghua University Press and Springer-Verlag GmbH, Germany,
part of Springer Nature

expected to develop more delicate NGs with flexible
structures to realize multi-channel detection of complex
physiological signals.47

3.2 Skin-like sensors for bioinspired
electronics

Bioinspired electronics is a technology that manufactures
functional electronicmaterials and artificial senses by imi-
tating the function and structure of living things.48–50 SLSs
have unique advantages inmimicking biological structures
and functions due to their high sensitivity, durability, and
low-power consumption.51 In terms of its specific appli-
cations, this section mainly introduces artificial synapses

that imitate biological neural structures, and sensory sim-
ulations that imitate human perception, such as tactile
simulations, olfactory simulations, visual simulations, and
auditory simulations.

3.2.1 Artificial synapses

Artificial synapses mimic the plasticity of the brain and
are an important part of future neuromorphic systems.
Compared with silicon circuit-based neurons, NG-based
artificial synapses has the advantages of simple struc-
ture, low manufacturing cost. Compared with the tra-
ditional von Neumann calculation method, NG-based
artificial synapses has the advantage of lower energy



10 of 20 WANG et al.

consumption.48,52 By mimicking the signaling mecha-
nisms and synaptic plasticity of synapses in the brain,
precise control of synaptic functions related to learning
and memory can be achieved. Shan et al. developed an
artificial kinesthetic system consisting of an S-TENG that
can be attached to human skin and a field effect synap-
tic transistor.53 The friction layers of S-TENG are PDMS
and MXene, and the S-TENG has a high sensitivity of
0.197kPa

−1 in the low-pressure region of below 6 kPa,
and a sensitivity of 0.003kPa−1 in the high-pressure region
of 6 − 30kPa. Field effect synaptic transistor is used to
achieve synaptic plasticity and can simulate learning and
transition from short-term memory to long-term mem-
ory. Therefore, the system has the function of sensing
the motion state and direction of the human body. In
addition, 15 different simulated sign language gesture sig-
nals were collected by the system, and then they were
identified by the SVM classification algorithm, and good
accuracy was obtained (Figure 7A). Jiang et al. devel-
oped a high-resolution pressure piezo-memory system
(HPPMS), which is a typical neuromorphic tactile sensor
with non-volatile force-resistance switching and force-
tunable synaptic functions with a pixel size of only 60
nm.54 By enhancing processing efficiency and recogni-
tion rate, HPPMS enables nanoscale force image sensing
and memory action. In principle, the technology offers
the opportunity to produce very tiny force dispersion and
simplifies the tactile sensor circuit and the development
of in-sensor computation (Figure 7B). Chen et al. devel-
oped a PENG-based graphene artificial sensory synapse.55
PENG not only acts as a power source for synaptic
devices, but also effectively modulates synaptic weights
by changing external strain pulses, and successfully real-
izes external stimulation/sensing and synaptic transmis-
sion. This work achieves modulation of synaptic weights
and reduced power consumption by replacing the tra-
ditional gate voltage supply with piezoelectric potential,
which is highly desirable in low-energy artificial neuro-
morphic computing systems. This work may be of great
help for self-powered AI, neuromorphic sensing systems
(Figure 7C).
The current work on artificial synapses is mainly

focused on imitating the senses of living things (mainly
humans), and in the future it is expected to develop super-
human sensing capabilities, that is, to detect information
that cannot be detected by biological sensory organs, such
as: ultrasonic or infrasonic waves, infrared or ultraviolet,
chemical properties of gases or liquids. In addition, arti-
ficial synapses can also provide basic research support
for organ chips to some extent.56 These functions have
very broad application prospects for many fields such as
robotics, aerospace, or military.

3.2.2 Tactile simulation

The skin is one of the most sensitive and complicated
sensory organs in the human body, transforming envi-
ronmental inputs into physiological signals that the brain
interprets.35 Typically, mechanoreceptors, as neuronal
sensor elements within the skin that receive tactile per-
ception, are buried at varying depths under the skin’s
surface and react to stresses on varying timescales.57
There are two kinds of mechanoreceptors, fast adapt-
ing (FA) mechanoreceptors and slowly adapting (SA)
mechanoreceptors. FA mechanoreceptors primarily per-
ceive force dynamics and generate strong signals during
force loading and removal.58 SA mechanoreceptors are
mainly used to feel the continuous effect of static force
during long-term stimulation.57 NG has good mechanical
stimulation response ability, and can be used to simulate
the mechanoreceptors of skin to realize the function of
tactile simulation. Chun et al. presented a self-powered
flexible neural tactile sensor (NTS) inspired by human
finger skin.34 The NTS comprises of a 20 × 20 pixel
graphene-based array of ultra-high-density pressure
sensors. Importantly, the SA mechanoreceptors and FA
mechanoreceptors in NTS devices can detect pressure
and vibration as sensitively as real human skin. All
signal outputs produced by SA and FA mechanoreceptors,
respectively, are very similar to human neural signals. NTS
also has the structure and function of simulating human
fingerprints, and can classify 12 kinds of fabrics with
complex patterns, and the SVM algorithm can achieve
a classification accuracy of 99.1% (Figure 8A). Li et al.
presented a fiber-structured, highly elastic, and breathable
electronic skin.37 The constructed electronic skin consists
of three layers of nanofibers (NFs): polyvinylidene fluoride
NFs, carbon NFs, and polyurethane NFs. The electronic
skin has a sensitivity of 0.18VkPa−1 and a water vapor
permeability of 10.26kgm

−2d−1 in the pressure range
of 0 − 175kPa. Not only does this electronic skin have
outstanding tactile sensing capability, but it also has good
qualities such as high elasticity, high permeability, self-
powered supply, cheap cost, scalability, etc. (Figure 8B).
Bu et al. demonstrated a stretchable triboelectric-photonic
smart skin (STPS).35 STPS employs a grating-structured
metal sheet to simulate skin stripes, allowing for multidi-
mensional touch and gesture sensing for vertical pressure
sensing with a maximum sensitivity of 34mVPa

−1
.

The pressure sensing qualities are stable under various
stretching situations, demonstrating synchronous and
independent sensing performance in response to external
stimuli and a high level of durability. STPS may find
use in soft robotics and human–machine interaction
(Figure 8C). Li et al. created a PENG-based flexible
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F IGURE 7 Application of artificial synapses in skin-like sensors (SLSs). (A) A triboelectric nanogenerator (TENG) that may be applied
to human skin and a field effect synaptic transistor constitute an artificial kinesthetic system, Reproduced with permission,[53] Copyright
2021, Elsevier Ltd. (B) A pressure piezo-memory device with 60 nm pixel size as an ultrahigh-resolution neuromorphic tactile sensor for
on-chip computing. Reproduced with permission,[54] Copyright 2021, Elsevier Ltd. (C) By combining piezoelectric nanogenerator (PENG)
with an ion gel-gated transistor, a piezotronic graphene artificial sensory synapse was constructed. Reproduced with permission,[55] Copyright
2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

pressure sensor with a high output voltage by employing a
tetrafluoroethylene−hexafluoropropylene−vinylide/cyclic
olefin copolymer with outstanding positive/negative
charge storage capabilities.36 By optimizing the com-
pressive properties of piezoelectric electrodes, the sensor
exhibits a sensitivity of up to 30 mV kPa−1. At the same
time, in the interval of 0 − 150kPa, it has a linearity as
high as R2 = 0.99963. This work presented a concept for
creating PENG with high sensitivity and a broad linear
pressure zone, which is beneficial for the development of
wearable pressure SLSs. (Figure 8D).

3.2.3 Olfactory simulation

As one of the most important functions of artificial nose,
olfactory simulation can be used to distinguish different

kinds of gases. Despite great progress, existing artificial
noses still lack sensitivity and selectivity.59 AI technol-
ogy plays a very important role in olfactory simulation
and can improve the accuracy of gas identification.60 NG
can be used to ionize gases due to its high voltage advan-
tage. Zhu et al. reported a TENG-based sensor for volatile
organic compound (VOC) recognition for the simulation
of biological olfaction.61 Using TENG to generate a high
output voltage of 600V, the plasma dischargemodes of sev-
eral VOCs with distinct ion transport characteristics were
determined. Since the emission patterns of different VOC
mixtures are unique and repeatable, the ML algorithm
can be used for gas identification. The CNN algorithm is
used to automatically extract specific features from the
ion mobility spectrometry data to realize the detection of
methanol, the four gases, ethanol, acetone, and Isopropyl
alcohol (IPA), were classified with an accuracy rate of
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F IGURE 8 Application of tactile simulation in skin-like sensors (SLSs). (A) On the basis of neural finger skin, self-powered pressure,
and vibration sensitive tactile sensors. Reproduced with permission,[34] Copyright 2019, American Chemical Society. (B) A scalable
electrospinning production method for a fiber-only electronic skin. Reproduced with permission,[37] Copyright 2019, Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim. (C) A triboelectric–photonic flexible smart skin for touch and gesture sensing. Reproduced with
permission,[35] Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (D) A flexible piezoelectric nanogenerator (PENG) that is
stable, sensitive, and has a large pressure range that is linear. Reproduced with permission,[36] Copyright 2018, American Chemical Society

48.214%. Although the accuracy is lower than that of tradi-
tional ML, it is still within an acceptable range considering
the properties of gas molecules (Figure 9).

3.2.4 Visual simulation

Computer vision has benefited greatly from advances in
ML techniques. Computers can recognize a huge num-
ber of images with high accuracy using this technique.

The challenge of visual simulation can be addressed
by merging computer technology with NG image recog-
nition technology.62 Yu et al. constructed and used a
bio-inspired mechanical photonic artificial synapse with
a synergistic impact of mechanical and optical plastic-
ity to help mechanical plasticity.63 A graphene/MoS2
heterostructure-based phototransistor and an integrated
TENG make up the artificial synapse. By controlling
the charge transfer in the structure through the friction
potential, the photoelectric behavior of synapses such as



WANG et al. 13 of 20

F IGURE 9 Application of olfactory simulation in skin-like sensors (SLSs). Volatile organic compounds sensing based on triboelectric
nanogenerator (TENG) and machine learning (ML)-assisted ion mobility analysis. Reproduced with permission,[61] Copyright 2021, Science
China Press

F IGURE 10 Application of visual simulation in skin-like sensors (SLSs). Bio-inspired mechanical photonic artificial synapse with
synergistic effect of mechanical and optical plasticity. Reproduced according to the terms of the CC-BY license.[63]

postsynaptic photocurrent, persistent photoconductivity,
and photosensitivity can be easily regulated. The error BP
technique is utilized to increase the accuracy of image
identification to 92% (Figure 10).

3.2.5 Auditory simulation

More than 10% of the world’s population currently suf-
fers from hearing impairment,64 and external hearing
aids can amplify specific damaged sound areas to audi-
ble levels.65 NG is very suitable for auditory simulation
due to its good acoustic response performance. Guo et al.
designed a self-powered triboelectric auditory sensor for
the realization of auditory analog functions.66 Based on
TENG technology, triboelectric auditory sensor shows an
ultra-high sensitivity of 110 mV dB−1. By systematically

optimizing the design of the boundary structure, the broad-
band response range can reach 100–5000 Hz. Accurate
speech recognition was demonstrated when triboelectric
auditory sensor was combined with intelligent robotics
(Figure 11).

3.3 Skin-like sensors for human
movement status recognition

The use of NG on SLSs has been shown to detect andmoni-
tor humanmotion and accurately identify differentmotion
states.67–69 This section reviews the application of exist-
ing AI enhanced SLSs in human activity monitoring. The
current main application scenarios focus on three aspects:
smart gloves,18–20 handwriting recognition,70–74 and gait
recognition.10,11
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F IGURE 11 Application of auditory simulation in skin-like sensors (SLSs). A triboelectric nanogenerator (TENG) auditory sensor for
social robots and hearing aids that is very sensitive and runs on its own power. Reproduced according to the terms of the CC-BY license.[66]

3.3.1 Smart glove

As a commonly studied human–computer interaction
technology, smart gloves based on NG can collect a lot
of information from human (mainly hand) movements.75
Wen et al. investigated a glove with a covering of carbon
nanotube/thermoplastic elastomer TENG.20 By utilizing
ML technology to perform different gesture detection tasks
in real-time, they can accomplish high-precision virtual
reality/augmented reality control, especially in humid cir-
cumstances (Figure 12A). Syu et al. developed a bionic and
flexible hybrid self-powered sensor by combining copper
triboelectric sensors with biomimetic PDMS triboelectric
sensors to improve energy harvesting properties.19 Addi-
tionally, smart gloves and force sensors have been validated
sequentially using amethod based on long- and short-term
memory neural network that is capable of distinguishing
the movements of five individuals adequately. The devel-
oped bionic and flexible hybrid self-powered sensor is a
wearable self-power sensor technology with a wide range
of application possibilities (Figure 12B). Zhu et al. pre-
sented a tactile feedback smart glove that incorporates a
triboelectric finger bending sensor, a palm sliding sensor,
and a piezoelectric mechanical stimulator.18 They demon-
strate how a self-generated triboelectric signalmay be used
to identify multi-directional bending and sliding events in

a virtual world. The CNN and SVM algorithms are uti-
lized to recognize targets with an accuracy of up to 96%
(Figure 12C).

3.3.2 Writing recognition

Handwritten signature is one of the key biometric qual-
ities, and it is widely employed in scenarios such as
reception of products and signing of agreements in every-
day life. With the advent of the electronic information age,
the storage carrier of handwritten signatures is no longer
restricted to paper, but can also be kept through computer
hard disks. Therefore, it is vital to design an SLS that can
recognize handwritten information. Because NG has the
advantages of self-powered and low cost, Zhang et al. used
TENG to develop an intelligent self-powered tablet based
on the leaf design.70 The handwriting tablet features a
cylindrical surfacemicro/nano structure, and the recorded
handwriting signals have distinct characteristics. Using
an SVM decision tree multi-class classifier to recognize
six different handwritten English sentences, this classifier
has a classification accuracy of 99.66% (Figure 13A). This
innovative method for letter recognition of text signals was
proposed by a team led by Ji et al. and successfully detected
26 different handwritten letter signals.71 The PDMS porous
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F IGURE 1 2 Application of smart gloves in skin-like sensors (SLSs). (A) A super-hydrophobic glove based on triboelectric
nanogenerator (TENG), which can still maintain a high recognition rate of 96.9% for 11 movements under wet conditions. Reproduced
according to the terms of the CC-BY license.[20] (B) Based on long- and short-term memory algorithm biomimetic and flexible hybrid
self-powered sensors. Reproduced with permission,[19] Copyright 2020, Published by Elsevier Ltd. (C) A finger bending sensor based on
triboelectricity, and the piezoelectric chip performs tactile mechanical stimulation to achieve enhanced human machine learning (ML).
Reproduced according to the terms of the CC-BY license.[18]

structure constructed by TENG using sodium chloride can
effectively improve the friction area in the application pro-
cess, and the PDMS andwoven coppermesh are fabricated
by the water treatment process, which has the advantages
of environmental protection and low cost. When employ-
ing short-time energy as the letter fingerprint, extracting
the letter fingerprint from the short time energy of the
original signal, and applying maximum likelihood tech-
nology to identify 26 letters, the mid-Gaussian SVM has
the highest identification accuracy, reaching 93.5%. A n*n
matrix of sensing units is employed when TENG is used
to recognize handwritten data. Such a surface design aids
in the effective collecting and subsequent processing of
handwritten data (Figure 13B). Jeon et al. developed a cloth
touchpad that is worn on the wrist based on TENG.72 The
touchpad is composed of low-cost commercial fabric, with
seven columns and seven rows (49 pixels), each row or
column contains seven-shaped cells, and the friction layer
is wool and PTFE. It also uses vertical-contact separation
and horizontal sliding blending mode. It is capable of
tracking basic movements and creating appropriate out-
put signals. It can classify the numerals 0–9 on the touch
panel with 98% accuracy using the pre-trained BP neural
network. The technology can be used to connect devices
employed in the field of e-textiles, among other things
(Figure 13C).

Yun et al. presented a TENG-based touch panel that is
self-powered. The touch panel pixel sensor unit is made
up of a TENG matrix with seven columns and seven rows
(49 pixels).73 It operates in a hybrid method of vertical-
contact separation and horizontal sliding. It detects each
pixel that has been touched by comparing the signal peaks
generated at the same moment. The number patterns
from ‘0’ to ‘9’ are identified with bending angles of 0◦,
119◦, and 165◦, and the classification accuracy is 93.6%,
92.2%, and 91.8%, respectively, using a pre-trained neural
network based on the CNN method (Figure 13D). This
discovery is likely to be applied in AI-oriented practical
internet of things applications such as smart calculators.75
In addition, Liu et al. proposed a fast-response, high-
sensitivity, self-powered artificial sensory memory driven
by a triboelectric sensor, and constructed a 28*28 matrix
triboelectric sensory receptor with high uniformity and
anti-crosstalk to enable real-time vision of handwritten
pictures.74 Specifically, it integrates TENGwith field-effect
synaptic transistors and enables real-time neuromorphic
calculations utilizing the TENG matrix for the first time.
The typical aspects of sensory memory, including exci-
tatory postsynaptic current and paired-pulse facilitation,
as well as the hierarchical memory process from sensory
memory to short-term memory and two long-term mem-
ories, have been shown (Figure 13E). It has applications
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F IGURE 13 Application of writing recognition in skin-like sensors (SLSs). (A) A blade heuristic intelligent self-powered handwriting
board based on triboelectric nanogenerator (TENG). Reproduced with permission,[70] Copyright 2020, Elsevier Ltd. (B) A high-sensitivity
flexible TENG that adopts a new method for letter recognition of text signals. Reproduced with permission,[71] Copyright 2020, WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim. (C) Self-powered wearable fabric touchpad based on backpropagation algorithm neural network.
Reproduced with permission,[72] Copyright 2019, Elsevier Ltd. (D) Flexible self-powered touch panel based on convolutional neural network.
Reproduced with permission,[73] Copyright 2020, Elsevier Ltd. (E) A TENG with a 28 × 28 matrix and a high level of uniformity and resistance
to crosstalk. Reproduced with permission,[74] Copyright 2020, Elsevier Ltd
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F IGURE 14 Application of gait recognition in skin-like sensors (SLSs). (A) A low-cost smart sock that uses friction to collect extra
energy from low-frequency human movement to send sensor data wirelessly. Reproduced according to the terms of the CC-BY license.[10] (B)
A smart floor monitoring system that utilizes real-time sensor data processing to determine how many steps have been taken, the number of
persons using the floor, and what type of activity is being done. Reproduced according to the terms of the CC-BY license.[11]

in areas such as human–computer interaction and edge
computing.76

3.3.3 Gait recognition

NG has the characteristics of flexibility, low cost, strong
scalability, etc. It is suitable as a sensor for human motion
state detection and has a wide range of applications in
smart homemonitoring. Zhang et al. created low-cost fric-
tion smart socks that collect energy from low-frequency
human movement and function as wearable sensors,
conveying information about the user’s identification,
health state, and activities.10 They achieved a recognition
accuracy of 93.54% for 13 people and a detection accuracy
of 96.67% for five separate human activities using a DL
model with an end-to-end structure on the gait analysis
sock signal (Figure 14A). Shi et al. demonstrated a smart
floor monitoring system that utilizes self-powered friction
electric footpads in conjunction with DL data processing.11
The floor mat is manufactured with an “identity” elec-
trode design that enables parallel connection, reducing
system complexity and DL computation costs. The step
position, activity status, and identifying information may
be determined by the processing of real-time sensory data.
It can be used in intelligent sports andmedical monitoring
systems (Figure 14B).

4 CURRENT CHALLENGES AND
OUTLOOK

4.1 Stress adaptation

SLSs tend to work directly on the skin and therefore have
performance requirements for flexibility and stretchabil-
ity. Many reported works have achieved flexibility and
stretchability through material selection and structural
design. However, there is still a lot of work to be done to
truly meet the needs of practical applications and achieve
close contact between materials and skin. One of the most
important issues to address is stress adaptation. Generally
speaking, due to the difference in Young’s modulus
between two materials, the deformation amount of the
twomaterials is different when subjected to external force,
and this difference becomes particularly pronounced at
the contact interface. When subjected to periodic external
force, the connection interface is prone to mechanical
damage, which affects the sealing performance and
structural integrity of the material. In the design process
of flexible SLSs, two stress adaptation issues need to be
considered: one is the stress adaptation between the two
flexible materials of the sensor, and the other is the stress
adaptation between the sensor material and the human
skin adaptation. Future studies urgently require material
innovation to simultaneously achieve more accurate
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sensing functions and better solve stress adaptation
issues.

4.2 Stretchability–conductivity

SLSs usually consist of functional materials, structural
materials, and electrode materials.77 Among them, the cir-
cuit part often uses metal electrodes with special patterns
or fully flexible polymer conductive materials. However,
regardless of thematerial, as the length and cross-sectional
area of the electrodes change due to stretching, so does the
electrical conductivity. Changes in the circuit part will gen-
erate some false signals, thus misleading the judgment of
the sensor. Special circuit design, such as a high-resistance
sensor section, can mitigate stretchability–conductivity
interference. In addition, designing flexible circuits that
are less affected by stretchability–conductivity or have
higher conductivity are also a possible solution.

4.3 Algorithm optimization

Due to differences in materials, architectures, and applica-
tion situations of TENG-based sensors, they will generate
data of varying sizes and types. Therefore, it is criti-
cal to choose an appropriate AI optimization method
for the characteristics of these data. For instance, super-
vised learning algorithms are the most commonly used in
sensor-related applications (61%) compared to reinforce-
ment learning (27%) and unsupervised learning (12%).78
In the future, more efficient and targeted algorithms will
emerge to adapt to the sensors in the SLS systems, thereby
increasing SLSs efficiency and minimizing energy loss.
TheAI algorithms research based onTENGwill contribute
to the integration and development of AI and TENG.

4.4 Function integration

Currently, many TENG-based SLS implementations are
still monolithic. In the future, with the increasing demand
for multi-function, devices will gradually develop in
the direction of miniaturization, integration, and multi-
function coupling. For example, SLSs are expected to
monitor multiple physical quantities or different sites
simultaneously. Therefore, it is very necessary to study the
functional integration of AI technology in TENG-based
SLSs applications, which will promote the integration and
development of AI technology and TENG in SLSs. Addi-
tionally, the development of hybrid TENGs to continuously
improve the energy harvesting efficiency also has practi-
cal significance for its application in SLSs. For example,

by combining TENG with electromagnetic generator,79,80
the frequency range of mechanical energy collection can
be greatly increased (from low to high frequency, from
small to large amplitude), therefore enabling wider sens-
ing and more efficient energy supply. At present, hybrid
TENG systems mainly consist of simple stacks of various
energy harvesters. Therefore, it is necessary to improve the
interoperability of the hybrid power system by logically
organizing various energy units.81
In conclusion, the AI-enhanced SLSs based on NG

is a systemic effort that incorporates multiple current
advanced technology. It is not a simple patchwork of sev-
eral technologies, but complementary advantages. Each of
the included technologies must be synergized with other
technologies, with the ultimate goal of achieving higher
performance sensor system. It is foreseeable that AI-
enhanced SLSs will play a more important role in the field
of biomedical diagnosis and treatment with the improve-
ment in stress adaptation, stretchability–conductivity,
algorithm optimization, and function integration.
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