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Recently, there have been several scientific breakthroughs in the fields of micro- and
nanoscience. The Micro journal is a distinguished international open-access journal that is
known for sharing the latest research advances in physics, chemistry, materials, biology,
medicine and engineering. This editorial describes the vision and mission of the Micro
journal while also providing a glimpse into the promising future of micro- and nanoscience.
Within this field, areas of intense research activity include biomedical research, energy
and environmental studies, electronic devices, industrial applications and microfluidic
technologies.

In the field of biomedicine, a series of innovations are pushing the technological fron-
tier. In 2023, Wu’s team optimized ACET-enhanced biosensors to significantly enhance
their detection speed and sensitivity, providing a new method for rapid disease diagno-
sis [1]. In 2024, Zhang’s team developed a biosensor based on DNA and optical fiber
technology that uses gold nanoparticles for signal enhancement. This biosensor achieved
the highly selective and rapid detection of iodide, providing a new method for clinical
diagnosis [2]. Kucukturkmen et al. used microfluidic technology to accurately synthesize
nanoparticles, improving the effectiveness and repeatability of drug delivery systems [3].
In 2022, Santino’s team developed nanoparticles that offer a less toxic option for cancer
diagnosis and treatment [4]. In addition, Zhitomirsky et al. developed novel composite
membranes that incorporate the biocompatibility of diamond, along with its other excellent
properties, avoiding the use of traditional toxic solvents [5]. In 2024, Jia’s team prepared a
TiZrHfNbTa nanomembrane through annealing on stainless steel with good hardness and
wear resistance, as well as excellent corrosion resistance. This membrane is able promote
osteoblast proliferation and matrix mineralization and therefore could be applied as a
high-entropy alloy coating in bone implants [6]. Li’s team studied an enhanced implantable
biodegradable TENG based on a PVA aerogel for the real-time monitoring of muscle ac-
tivity [7]. Together, these research results not only promote the progress of biomedical
technology but also show promising potential for future disease treatment and diagnosis.

In the fields of environmental science and energy, researchers have focused on CO2
disposal and marine pollution. To harvest energy from seawater, a super-hydrophobic
surface is created from laser-treated silicone rubber. Mahajan’s team provided a new
method of reducing CO2 emissions by developing Si-Fe nanostructured materials [8]. In
2024, Wen et al. successfully synthesized a multifunctional ionic covalent triazine skeleton
catalyst for the CO2 cycloaddition reaction, which maintained high catalytic activity at
diluted CO2 concentrations and in mild conditions [9]. Song’s team studied and synthesized
nitrogen-doped reduced graphene oxide, providing a simple and reproducible method for
wastewater treatment [10]. Fonseca et al. revealed the impact of biofilms on the distribution
of microplastic particles in the ocean, providing a new perspective on decontamination
strategies [11].

In the field of new energy, the development of new super-combustible propellants
using biomass waste has promoted the use of sustainable energy. In 2022, Enthilkumar’s
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team used graphite particles (GPs) and carbon cloth (CC) as MFC anode electrodes, show-
ing that GP electrodes can be used for efficient wastewater treatment and power generation
in MFC [12]. In 2023, Robbins found that bacteria growing in Cu-OH-Cl mineral mem-
branes on the surface of saltwater ponds may use petroleum as a carbon source, providing
possibilities for environmental remediation [13].

In the industrial sector, technological advances have had a significant impact on food
packaging, functional textiles and coatings. Hou et al. developed highly thermal tex-
tile gloves with improved heat dissipation from carbon nanotubes [14]. In 2022, Zhou’s
team demonstrated a continuous and controllable method to prepare ultra-dense MXene
fibers with good strength, toughness and electrical conductivity characteristics through the
synergistic effect of interface interactions and thermal tensile stress [15]. Loupassaki encap-
sulated clove essential oil in hydroxypropyl-β-cyclodextrin to create smart food packaging
material with a controlled release function, enhancing food preservation [16]. Annur et al.
successfully developed a PH-sensitive indicator film using rhizome starch/carrageenan
and different concentrations of grape skin extract as raw materials. The resulting film was
low-cost and had good thermal stability [17]. Meucci’s team optimized low-voltage wire
and cable composites based on natural magnesium hydroxide to improve their mechanical
properties and flame retardancy [18]. Suo’s team made a hydrogen gel coating with low
friction and good stability. This gel can be widely used in many fields, such as for stimulus
response and antifouling models [19]. Together, these results have furthered the develop-
ment of this industry and offered new methods for enhancing product performance and
environmental protection.

In the field of electronic devices, much progress has been made in research on semi-
conductor materials. In 2022, Roccaforte et al. achieved the precise doping of SiC and GaN
through ion implantation technology, improving the performance of power devices [20].
Zabotnov et al. used femtosecond laser technology to create micro/nanostructures on
Ge2Sb2Te5 films with the potential to enhance storage technologies [21]. Schwenk et al.
used copper and silver iodide wire to make humidity sensors with high monitoring sensitiv-
ity [22]. Devesa et al. prepared α-BiNbO4 and β-BiNbO4 ceramics through wet chemistry,
offering insights into the properties of new semiconductor materials [23]. Elif’s team stud-
ied the temperature-dependent electronic band structure of β-Ga2O3 in the range of 0 to
900 K using first-principles simulations combined with optical measurement techniques.
At the same time, they evaluated the band edge displacement caused by temperature [24].
Kim et al. created high-efficiency and uniform perovskite LEDs (PeLEDs) with a large area
by utilizing pre-crystallized colloidal perovskite nanocrystals and an enhanced rod-coating
technique [25]. These achievements not only further the performance of electronic devices
but also offer new research directions for semiconductor applications.

In the field of microfluidic technology, Senf et al. studied the particle trajectories of
airfoil DLD microfluidic separation technology while varying the Reynolds number and
fluid viscosity, which enhanced the separation effect [26]. In 2022, Cairone et al. investigated
two affordable low-light-loss waveguide fabrication techniques: 3D-printed PDMS and
laser-cut PMMA. By adding a copper layer to the PDMS waveguide, the signal loss was
significantly reduced [27]. In 2024, Yu Cao et al. introduced a photofluid microplatform
that utilizes ultraviolet nanosecond laser technology on carbon nanotube-doped PDMS
substrates. This technology enables efficient remote fluid and particle control [28]. Ou
et al. proposed a microfluidic system with particle manipulation. The microfluidic chip
they developed had a vortex structure comprising three microchannels, providing a new
approach to low-cost manufacturing and system integration [29].

In the field of theory and simulation, Orlov formed a new chemical bond between
silicon nanoparticles through compressing the quantum tunneling effect on their surfaces,
representing a method of obtaining new materials [30]. Ji et al. investigated the effect of
temperature and SDS concentration on the solidification morphology of wax drops at the
air–water interface. This study enriched our scientific knowledge of interface materials by
clarifying the mechanism behind changes in the morphology of wax droplets [31]. Cordero
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et al. analyzed the role of chlorosulfonic acid in graphite dispersion through DFT tech-
nology, providing a theoretical basis for the mechanism of molecular stripping. In 2023,
Cordero’s team studied the behavior and damage mechanisms of flax/Elium composites
during stretching through a combination of techniques, including in situ microCT scanning
and finite element analysis, revealing the effects of moisture aging on material proper-
ties [32]. Neil Savage used machine learning and big data technology to gain widespread
access to research data for new materials. This technology accelerates the discovery of new
materials [33]. In 2021, Puru Jena further accelerated the discovery of new materials by
increasing the computing power and utilizing first principles [34]. Overall, these studies
have deepened our understanding of material properties, and more importantly, they
provide scientific guidance for the design and optimization of materials.

In recognizing the significance and relevance of the above micro- and nano-applications,
I am pleased to highlight trending future research directions for the Micro journal. This new
chapter of Micro welcomes original research and review articles on either a fundamental
investigation or an applicational exploration of biomedical and material research, energy
and environmental studies, electronic devices, industrial applications, or microfluidic tech-
nologies. We hope that the success as well as the limitations of these fields can inspire
further innovation.
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