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Cells generate traction forces by interacting with the extracellular matrix
(ECM) during migration, contraction, invasion, and spreading. Cell-traction
forces (CTFs) are extremely small but have enormous biological effects. It
has been discovered that CTFs serve a crucial role in regulating proliferation,
differentiation, wound healing, morphogenesis, angiogenesis, inflammation,
and tumor genesis by working together with biochemical signals to maintain
a coherent framework for these processes. For the study of cell biology, it is
essential to understand the possible effect of CTFs on the various cellular
functions and the amount of traction forces that can be generated by cells
in their various states. Currently, CTF quantification approaches are either
confined to detecting numerous scattered places on the surface of cells or
are severely limited in temporal and spatial resolution, both of which are crit-
ical for living cells. Obtaining a highly accurate and dynamic mapping of the
force distribution across living cells in real time via a simple mathematical
technique remains a significant difficulty. This perspective provides a brief
overview of recent landmark advances in the measurement of two-dimen-
sional (2D) CTFs, as well as unique ideas for future improvement.

CTFsproducedby the interaction ofmyosin II with actin filaments can be trans-
ferred to the ECM through focal adhesions (Figure 1A). Focal adhesions are2

transmembrane receptor proteins that primarily include integrins, vinculin, talin,
and paxillin and are responsible for establishing physical connections between
theECMand the actin cytoskeleton. CTFs are essential in the regulation of several
pathological and physiological processes, including proliferation, differentiation,
tumorigenesis, morphogenesis, angiogenesis, inflammation, and wound healing.
Therefore, quantifying CTFs is essential for a better understanding of these
fundamental biological processes, which can contribute to the development of
novel technologies for disease diagnosis and drug screening.

Figure 1B depicts the time frame of the representative CTF quantification
methods. In 1980, researchers proposed studying cell motility using an elastic sil-
icone substrate and reflecting CTFs through elastic distortion andwrinkling of the
substrate.3 Thereafter, accompanied by the synergistic advancement of optical
materials, micro-nano-fabrication, and computer technology, cell-traction force
microscopy4wasdeveloped, which uses an elastic polyacrylamide gel (PAG) sub-
strate to quantify CTFs. Young’s modulus of PAG can be adjusted from 1.2 to
100 kPa by varying the ratio of bis-monomers to acrylamide, which has the ben-
efits of transparency, flexibility, high elasticity, and ease of production. Briefly, af-
ter the cells are cultured on a PAG substrate and the microscopy images of the
substrate deformation are collected, CTFs can be computed. Furthermore, the
markers, which typically include two different colored nanobeads, are often im-
planted on an elastic substrate to reflect the displacement field, hence improving
displacement field resolution. This is mostly because the elastic substrate might
deform via the influence of CTF action, causing the markers to migrate. The reg-
ularization and filtering methods have been effectively developed to efficiently
reduce the error of traction inversion. Nevertheless, cell-traction forcemicroscopy
should take a reference image of the substrate topography before calculating
CTFs. It is also mathematically complex to compute the traction force field
directly from the displacement field.

Thus, high-quality displacement fields are essential, and several research
teams have developed organic-based micropillar arrays force sensors by
altering the form structure of the elastic substrate to demonstrate this.5 The
aspect proportion of the micropillars could be adjusted based on the mold.
ll
When the micropillar array sensor is functional, each micropillar acts as an
independent sensor to quantify the traction force applied by the cells. These
micropillar arrays force sensors not only facilitate to measure CTFs in all direc-
tions, but they also simplify it significantly to calculate the CTF-induced
displacement field. Meanwhile, fluorescent substances or gold nanospheres
were modified to be employed as markers on the top of the micropillar arrays
to optimize the observation approach. Furthermore, a double-sided micropillar
array6 was also designed for improved precision at low magnifications. Howev-
er, the spatial resolution of these organic micropillars is rather restricted in the
practice by the preparation process. The pillars’ diameters are typically
measured in microns. By comparison, inorganic pillars developed by the chem-
ical etching of silicon wafers method or photolithography technology can effec-
tively improve the resolution to the sub-micrometer level, but it is impossible to
observe the mechanical properties of the living cells in real-time conditions.
Typically, the cells are dried and fixed before observing the displacement of
the inorganic nanopillars with a scanning electron microscope.
To address the possible drawbacks of the aforementioned measuring ap-

proaches, a research team developed a novel InGaN/GaN nanopillar array
(1.5 mm in height, 150 nm in diameter) with a high spatial resolution of 31 750
dots per inch (dpi) (800 nm in space between the nanopillars) for quantifying
CTFs’ distribution in 2020.1 At the tip of each nanopillar, the multiple quantum
well is fabricated, which can be excited by 405 nm light and photoluminescence
(PL) at 460 nm. When CTFs are applied to the InGaN/GaN nanopillar array, the
inner piezo-potential of the nanopillars will be redistributed, which can further
control the PL emission. Furthermore, by employing sapphire as the foundation
layer, the device can exhibit improved light transmittance. Therefore, CTFs are
directly exhibited by the PL intensities and positions of the nanopillar array based
on an optic microscope-laser confocal microscope. This work describes a
mechanical–optical coupling approach for real-time CTFs mapping with an ul-
tra-high spatial resolution, high sensitivity, and electric trigger free by using a
semiconductor multiple quantum wells matrix through the piezo-phototronic ef-
fect (Figure 1C).
CTF quantification technology is constantly being evolved, providing strong

support for the research of varied biological impacts, and it can beusedas anovel
method for disease diagnosis and drug selection. Extending the CTF measure-
ment technique to 3D cell culture can help to further simulate the cell’s actual
growth environment. Currently, some research groups have successfully devel-
oped oil microdroplets7 and elastic round microgels8 to obtain 3D CTFs. Both
2D and 3D CTF9 measurement technologies have distinct application scenarios
that can be developed in conjunction. Meanwhile, the DNA-based molecular
probes have also been fabricated.10 The mechanical forces transmitted to spe-
cific proteins across cell membranes can be measured more accurately and
over longer periods with the use of this technique. Overall, the next stage is to
develop CTF measuring technology with high temporal/spatial resolution, accu-
racy, stability, and real-time capabilities, and its success is dependent on the
advancement of novel materials and microfabrication technology.
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Figure 1. 2D cell-traction force quantification technology (A) Schematic diagram of CTFs. (B) Time frame of the representative CTF quantification methods. (C) Real-time and
dynamic mapping of CTFs based on piezo-phototronic nanopillar.1
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