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A Dual-Modal Wearable Pulse Detection System Integrated
with Deep Learning for High-Accuracy and Low-Power Sleep

Apnea Monitoring

Jia Wang, Jiangtao Xue, Yang Zou,* Yuxin Ma, Junhan Xu, Yanming Li, Fei Deng,

Yigian Wang, Kai Xing,* Zhou Li,* and Tong Zou*

Despite being a serious health condition that significantly increases
cardiovascular and metabolic disease risks, sleep apnea syndrome (SAS)
remains largely underdiagnosed. While polysomnography (PSG) remains the
gold standard for diagnosis, its clinical application is limited by high costs,
complex setup requirements, and sleep quality interference. Although
wearable devices using photoplethysmography (PPG) have shown promise in
SAS detection, their continuous operation demands substantial power
consumption, hindering long-term monitoring capabilities. Here, a
dual-modal wearable system is presented integrating a piezoelectric
nanogenerator (PENG) and PPG sensor with a biomimetic fingertip structure
for SAS detection. A two-stage detection strategy is adopted where the
self-powered PENG performs continuous preliminary screening, activating
the PPG sensor only when suspicious events are detected. Combined with a
Vision Transformer-based deep learning model, the high-accuracy
configuration achieves 99.59% accuracy, while the low-power two-stage
approach maintained 94.95% accuracy. This dual-modal wearable pulse
detection system provides a practical solution for long-term SAS monitoring,
overcoming the limitations of traditional PSG while maintaining high
detection accuracy. The system’s versatility in both home and clinical settings
offers the potential for improving early detection rates and treatment
outcomes for SAS patients.

1. Introduction

Sleep Apnea Syndrome (SAS) is a prevalent
sleep-breathing disorder, classified into
obstructive sleep apnea (OSA), central
sleep apnea (CSA), and mixed sleep apnea
(MSA), with OSA Dbeing the most com-
mon subtype. Globally, OSA affects over
24% of the population, a prevalence that
continues to rise annually. Alarmingly,
>80% of patients remain undiagnosed and
untreated.?) SAS not only significantly
reduces quality of life, but is also strongly
associated with the development of car-
diovascular diseases such as hypertension,
arrhythmia, and heart failure, as well as
metabolic diseases, significantly increasing
the risk of death and disability.’] Conse-
quently, early screening and diagnosis of
SAS are of critical clinical importance for
reducing the burden of associated diseases.
Currently, polysomnography (PSG)* is
the gold standard for diagnosing SAS.
By synchronously recording physiological
parameters such as electroencephalog-
raphy, electrocardiography, electromyog-
raphy, electrooculography, nasal airflow,
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respiratory effort, and blood oxygen saturation, PSG provides
a comprehensive assessment of sleep structure and respira-
tory events. However, several limitations hinder its widespread
application:[*) PSG requires a specialized sleep laboratory envi-
ronment and skilled personnel, involves costly equipment and
testing procedures, and often compromises patients’ sleep qual-
ity due to the discomfort of multi-channel sensor attachments,
potentially leading to inaccurate results. These challenges restrict
the feasibility of PSG for large-scale population screening and
long-term dynamic monitoring, necessitating the exploration of
more portable and user-friendly alternatives.

In recent years, rapid advancements in microelectronics and
artificial intelligence (AI) algorithms have highlighted the poten-
tial of wearable devices for sleep monitoring.l®!) In particular,
photoplethysmography (PPG) has gained significant attention
due to its non-invasive and portability).[>"1¢] PPG detects periodic
changes in blood volume and blood oxygen saturation, reflecting
local hemodynamic characteristics and oxygenation status. Nu-
merous studies have demonstrated the utility of PPG signals in
detecting respiratory events associated with sleep apnea. For in-
stance, Jests etal.['”) achieved an 86.67% accuracy in distinguish-
ing between apneic and non-apneic events by extracting pulse
rate variability (PRV) features from PPG signals. Similarly, Liu
et al.l®®! developed a multi-task learning model (1D-MMResSNet)
that enhanced the ability to extract subtle differences in PPG
data, achieving detection accuracy, sensitivity, and specificity of
95.65%, 88.89%, and 97.30%, respectively. Particularly notewor-
thy is PPG’s capacity for real-time monitoring of dynamic blood
oxygen saturation (SpO,) changes, providing a critical indicator
for non-invasive identification of apnea events.['*22) However,
PPG sensors rely on active light sources for detection, resulting in
high power consumption, which poses challenges for long-term
continuous monitoring.[23-2°]

Piezoelectric nanogenerators (PENG) offer unique advantages
in physiological signals monitoring due to their high sensitiv-
ity to mechanical signals and self-powered properties.l?-2° By
directly converting minor mechanical deformations into electri-
cal signals, PENG reduces the overall power consumption of
signals acquisition systems, making it particularly suitable for
long-term continuous monitoring applications. In the field of
cardiovascular health, PENG has demonstrated high sensitivity
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and specificity for atrial fibrillation screening and blood pressure
assessment.[?”’] Regarding apnea detection, Panda et al.?% uti-
lized highly sensitive PENG devices to identify apnea events from
snoring signals characteristics, enabling real-time monitoring.
Lin et al.[*Y monitored thoracoabdominal respiratory movements
using piezoelectric sensors to successfully distinguish CSA from
OSA. Despite these advances, research has yet to explore the use
of piezoelectric sensors for pulse pressure wave monitoring in
sleep apnea detection. Unlike PPG, which measures volumetric
changes in blood via optical principles, PENG captures dynamic
changes in vascular pressure through the stress-strain response
of blood vessel walls.[3?] This mechanical signals-based detection
mechanism provides instantaneous feedback by directly measur-
ing vascular wall deformations, bypassing the lag associated with
blood oxygen saturation changes. Thus, PENG may offer a novel
pathway for the early identification of apnea events.

Building on this research landscape, we propose an inno-
vative dual-modal wearable pulse detection system. The hard-
ware design incorporates biomimetic principles, employing a
fingertip-like structure to simulate the palpation process of tra-
ditional Chinese medicine, ensuring stable contact between sen-
sors and the skin. The system integrates PENG and PPG sen-
sors, leveraging their respective strengths through a two-stage
detection strategy. In the first stage, PENG’s low-power advan-
tage facilitates 24-h continuous prescreening. Upon detecting
suspicious events, the system activates PPG for precise detec-
tion in the second stage. This strategy overcomes the limitations
of single-sensor approaches while optimizing the trade-off be-
tween power consumption and detection accuracy. At the algo-
rithmic level, this study is based on the deep learning model of
Vision Transformer,**! which can effectively extract and analyze
the high-dimensional features of sensor signals. Compared to tra-
ditional low-dimensional statistical feature-based methods, this
model achieves superior performance, with a high-accuracy con-
figuration reaching 99.59% accuracy and a low-power configura-
tion maintaining 94.95% accuracy in identifying apnea events.
The wrist-worn dual-modal sensing device offers a novel techno-
logical pathway for SAS detection, addressing the limitations of
conventional PSG while enabling low-power, high-accuracy, and
portable long-term dynamic monitoring. The system holds broad
applicability for home screening, clinical diagnosis, and treat-
ment evaluation, promising to improve the early detection and
management of SAS significantly. A comprehensive comparison
between our proposed system and existing SAS detection meth-
ods is provided in Table S1 (Supporting Information), highlight-
ing the advantages of our approach in terms of detection princi-
ples, algorithms, recognition accuracy, and power consumption.

2. Results and Discussion

2.1. Design of Dual-Modal Wearable Pulse Detection System

Traditional Chinese medicine (TCM) pulse diagnosis has a long
history and possesses unique advantages and value in clinical
practice. TCM Practitioners typically apply pressure with their
fingertips to specific points on the wrist, using their keen sense
of touch to perceive the characteristics of the pulse intuitively and
sensitively, such as its strength, speed, and rhythm. Inspired by
TCM pulse palpation, a wrist-worn dual-modal pulse monitoring
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Figure 1. A dual-modal wearable pulse detection system integrated with deep learning for sleep apnea monitoring. a) Schematic diagram of the dual-
modal wearable pulse detection system, along with an exploded view of the sensor module, showing the C-shaped clamp structure, elastic layer, and
integrated PENG and PPG sensors. b) Long-term continuous monitoring of pulse during home sleep, including a schematic representation of PPW
and PPG signals during normal breathing and apnea events. c) Physical photograph of the dual-modal wearable pulse detection system as worn on a
subject’s wrist, demonstrating its compact and portable design. d) Fundamental principles and processes of the system for monitoring sleep apnea,
illustrating the two-stage detection strategy where PENG performs continuous screening and PPG activates only when necessary. e) Vision Transformer
(ViT) deep learning model used for classifying sleep apnea data, showing the patching process, attention mechanism, and classification output.

device has been designed, as shown in Figure 1a. The system can
be divided into four parts: the force application device, silicone
elastic layer, sensing module, and communication module. The
force application device is designed as a C-shaped clamp, with
the curvature based on ergonomic principles. Through structural
design, the elastic potential energy of the spring can be con-
verted into pressure applied to the wrist. The spring mechanism
in the clip serves as an adaptive tension regulator, determining
the applied pressure. We tested individuals with different wrist
sizes and ultimately selected an appropriate spring wire diameter
and coil diameter to ensure appropriate pressure without causing
discomfort across diverse populations. The silicone elastic layer
is constructed from Ecoflex-30 and consists of two distinct seg-
ments: a modulus-matching layer and a hemispherical structure
designed to simulate the fingertip. Since the clip is composed
of rigid plastic, extended use may cause skin irritation. To allevi-

Adv. Sci. 2025, 2501750 2501750 (3 of 13)

ate this issue, a modulus-matching silicone elastomer layer with
mechanical properties similar to human skin was introduced be-
tween the C-shaped clip and the skin surface. This elastic silicone
layer prevents stress concentration at the hard-shell-skin inter-
face, further enhancing long-term wear comfort. The hemispher-
ical structure is designed based on the morphology of a finger-
tip, aiming to simulate the pressing process of the fingertip dur-
ing pulse diagnosis, thereby achieving stress concentration at the
radial artery for high-sensitivity monitoring. The sensing mod-
ule is divided into two parts, one of which is the pulse pressure
sensing unit that uses a fingerprint-like piezoelectric sensor. The
fingerprint-like structural design allows the polyvinylidene fluo-
ride (PVDF) film to conform closely to the spherical protrusions,
and enhances the sensitivity to the changes in pulse pressure.
The other part is the PPG unit, which embeds the PPG probe
into the surface of the fingertip-like hemispherical structure. The
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fingertip-like hemispherical structure and the force application
device ensure close contact between the sensor and the skin, re-
ducing motion artifacts and other noise while improving signals
stability. The communication module includes a lithium battery
and a signals acquisition circuit, enabling continuous collection
and wireless transmission of the pulse pressure wave (PPW) and
PPG signals.

Through a two-stage detection strategy, the dual-modal wear-
able pulse detection system can effectively acquire real-time con-
tinuous PPW and the necessary PPG signals to reflect the oc-
currence of sleep apnea events (Figure 1b). Figure lc shows
the physical photograph of the entire monitoring system, which
can be conveniently and comfortably worn on the radial artery
site of the subject. The fundamental principles and processes
of the system for monitoring sleep apnea are illustrated in
Figure 1d. By utilizing the advantages of low-power PENG, con-
tinuous high-sensitivity monitoring of pulse pressure can be
achieved. When abnormalities in the pulse pressure wave are
detected, the PPG module is activated to perform a precise as-
sessment of sleep apnea syndrome through the analysis of in-
dicators such as blood oxygen levels. This two-stage detection
strategy not only enhances monitoring accuracy but also re-
duces the overall power consumption of the wearable monitor-
ing system. The system integrates a PENG sensor and a PPG
sensor (MAX30102), transmitting signals via a low-power Blue-
tooth module (E104_BT5005A). Compared to the PPG module,
the self-powered PENG sensor operates with negligible power
consumption. Meanwhile, the PPG sensor, serving as a high-
precision oxygen saturation (SpO,) and heart rate monitor, has
its continuous power consumption primarily determined by its
LED (~34 mW). The Bluetooth module and MCU operates at
~40 mW in continuous mode. Due to the two-stage detection
strategy, and depending on the frequency of sleep respiratory
events, the PPG sensor is activated ~15 times per hour. Conse-
quently, the total estimated power consumption of the system is
~57 mW—compared to 74 mW when using PPG continuously—
resulting in a ~23% reduction in power consumption. Further-
more, a Vision Transformer (ViT) deep learning model is em-
ployed to handle high-dimensional feature extraction and clas-
sification of sleep apnea data, outperforming traditional low-
dimensional approaches. The model processes input sensing
signals—PPW, PPG, and SpO,—by first projecting them into
flattened patches, which are then augmented with positional em-
beddings and an additional learnable class embedding. These
patches are passed through the Transformer encoder, which in-
corporates multi-head attention, normalization, and MLP lay-
ers to capture complex patterns and temporal relationships. The
model’s final MLP head outputs the classification result, distin-
guishing between “SAS” (sleep apnea syndrome) and “Normal”
states. This approach enables the ViT model to effectively learn
and classify the intricate patterns associated with sleep apnea de-
tection, as shown in Figure 1le.

2.2. Characterization of the Dual-Modal Wearable Pulse
Detection System
The dual-modal wearable pulse detection system combines the

principles of TCM pulse diagnosis with two methods of pulse
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monitoring, achieving comprehensive and accurate monitoring
of pulse abnormalities. The monitoring principles are illustrated
in Figure 2a. First is the schematic diagram of the PPG principle
(Figure 2a-i). The PPG module consists of an emitter and a detec-
tor, which are placed closely against the skin surface to capture
the changes in arterial blood volume. Variations in the arterial
blood volume lead to changes in the amount of light absorbed
by the tissue, generating detectable signals. Figure 2a-ii shows
a single waveform of the PPG signals, which includes the sys-
tolic and diastolic phases. Different characteristic points of the
waveform reflect various stages of the pulse wave. Point a rep-
resents the main wave, reflecting the maximum pressure and
volume within the artery, corresponding to the highest pressure
during the cardiac contraction phase. Point b indicates the tidal
wave, which is the first trough and peak after the main wave, re-
flecting the backflow phenomenon when the aortic valve closes.
Point c is the descending inflection, representing the local min-
imum following the tidal wave. Its position and depth can re-
flect the elasticity and resistance status of the blood vessels. Point
d represents the bidirectional wave, indicating blood returning
to the left ventricle.3*?7! Figure 2a-iii illustrates the principle of
the PPG module measuring blood oxygen saturation. As shown,
HDbO, and Hb exhibit different optical absorption characteristics;
for instance, Hb has a higher absorption coefficient in the range
of 600 to 800 nm, while HbO, has a higher absorption coeffi-
cient in the range of 800 to 1000 nm. By utilizing this character-
istic and combining it with a computational model, the ratios of
these two can be detected separately, allowing the determination
of Sp0O,. The schematic diagram of the PPW module is shown in
Figure 2a-iv. By utilizing the high sensitivity characteristics of fin-
gerprint PVDF, and under pressure applied by the fingertip-like
hemispherical structure, it can reflect slight pressure changes
on the vascular surface during the pulse process, thus record-
ing the PPW signals. Its individual waveform (Figure 2a-v) also
records different stages of the pulse process. Point I represents
the early phase of ventricular contraction, while point II marks
the end of the main wave and indicates the beginning of ven-
tricular relaxation. Point III indicates the backflow in the aorta
during the temporary closure of the mitral valve. Point IV repre-
sents the descending trough between the main wave and the tidal
wave. Point V corresponds to the descending portion of the slow
wave, which is related to arterial elasticity and resistance. Point
VI reflects the time taken for the pulse wave to propagate to the
end, indicating the resistance state of the small arteries, while
point VII reflects the microcirculation response and terminal
pressure.}2331 Due to the high sensitivity characteristics and
good frequency response of Fingerprint PVDF, it performs well
in monitoring the magnitude and period of vascular contraction
(Figure 2a-vi), making it significant for monitoring pulse wave
amplitude (PWA) and heart rate variability (HRV). To be precise,
our system directly measures pulse rate variability (PRV) rather
than HRYV, as the latter requires ECG recordings. However, sub-
stantial evidence supports that PRV derived from pulse signals
strongly correlates with HRV under controlled conditions, mak-
ing it a valuable surrogate for assessing autonomic function dur-
ing sleep.[**#1] While PRV and HRV may show some divergence
during significant hemodynamic changes, this divergence itself
provides additional diagnostic information during sleep apnea
events by capturing the vascular component of the autonomic
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Figure 2. Principle and characterization of the fingertip-shaped pulse monitoring sensor. a) PPG and PPW sensor module pulse monitoring principles:
(i) Schematic diagram of PPG pulse monitoring principles. (ii) Schematic representation of PPG waveform. (iii) Schematic illustration of PPG monitoring
blood oxygen principles. (iv) Schematic diagram of PPW pulse monitoring principles. (v) Schematic representation of PPW waveform. (vi) Schematic
illustration of the amplitude and period of the PPW waveform. b) Finite element simulation results of the mechanical and electrical properties of arc
structures with fingerprint-like PVDF at different curvature radii under the same pressure conditions. ¢) Output comparison between sensors with and
without fingerprint-like PVDF pattern structures at different angles. d) Force-electric response relationship measured in the mechanical characterization
of arc structures with different curvature radii. €) Output curve of the PPW sensor module during more than 60 000 pressure tests.

response.[*!l To demonstrate that the highly sensitive PENG sen-
sor achieves consistent results with the PPG sensor in PRV mon-
itoring, both sensors were simultaneously placed on a subject’s
radial artery to record pulse waveforms for 1 min (Figure S1,
Supporting Information). The results showed high morpholog-
ical consistency between the two waveforms. Further statistical
analysis of adjacent peaks in both waveforms revealed a strong
linear correlation (R? = 0.9936). Therefore, the PENG sensor ex-
hibits performance comparable to that of the high-precision PPG
sensor in PRV monitoring.

The performance of the fingertip-like hemispherical structure
and fingerprint PVDF was characterized. First, finite element
simulation software COMSOL Multiphysics was used to perform
mechanical and electrical field simulations on protruding struc-
tures with different curvature radii (Figure 2b). Here, 15, r7.5,
r10, and r12.5 represent arc structures with curvature radii of 5,
7.5, 10, and 12.5 mm, respectively. By comparing the structures,
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it was found that when the curvature radius is 5, the stress expe-
rienced by the fingerprint-like PVDF attached to it is the great-
est under the same external force conditions. Therefore, the sur-
face potential under the same conditions is the highest, leading
to the selection of the fingertip-like hemispherical structure with
a curvature radius of 5 mm. Additionally, we created arc struc-
tures with different curvatures to further validate this conclusion.
In Figure S2 (Supporting Information), these different arc struc-
tures were used to test the radial artery of the same subject. Com-
pared to other curvature radii, the arc structure with a curvature
radius of 5 mm not only exhibits distinct characteristic points
in the PPW signals but also has the highest amplitude, thereby
confirming the results of the theoretical calculations. At the same
time, we verified the advantages of using fingerprint PVDF by ap-
plying both ordinary PVDF film and fingerprint PVDF to the arc
structure and using them together for pulse testing. As shown
in Figure 2¢, although the amplitude of the pulse wave is nearly
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identical when the sensors with pattern and without pattern are
in direct vertical contact with the skin, represented by the 0° po-
sition in the figure, a significant decrease in output occurs in the
sensor without pattern when the applied force is not vertical to
the skin. In contrast, the reduction in output for the sensor with
pattern is not significant. This demonstrates the versatility of us-
ing fingerprint PVDF for different contact angles. Subsequently,
the mechanical responsiveness of the sensor module was tested.
As shown in Figure 2d, the fingertip-like hemispherical struc-
ture with a curvature radius of 5 mm exhibits superior mechan-
ical response capability compared to structures with other cur-
vature radii, further confirming the effectiveness of the struc-
ture. The normal heart rate during sleep is ~#60-100 bpm. To ver-
ify that the PENG sensor maintains good output stability within
this range, four external excitation frequencies from 0.5 to 2 Hz
were set, covering the pulse frequency range corresponding to
sleep heart rates. Testing results in Figure S3 (Supporting Infor-
mation) showed that, except for 0.5 Hz, there is no obvious dif-
ference in the output amplitude of the PENG at other frequen-
cies, confirming the sensor’s stable amplitude output character-
istic across the heart rate range. Additionally, to ensure that the
PENG can accurately capture pulse waveform variations, we fur-
ther characterized its dynamic response performance. The PENG
sensor was placed on a vibration table and subjected to 50 Hz
external excitation. Test results demonstrated that under this ex-
citation frequency, the response and recovery time of the PENG
was 50 ms (Figure S4, Supporting Information). Although this
does not represent its ultimate fast-response limit, the achieved
performance is fully adequate for instantaneously tracking pulse
wave changes.

A long-duration fatigue test on the PPW module was also con-
ducted. The experimental results indicated (Figure 2e) that after
more than 60 000 cycles of elastic compression testing through
a motorized vertical test stand, the output performance of the
PENG sensor remained nearly unchanged, demonstrating its ex-
cellent stability for long-term continuous monitoring. To further
validate the long-term monitoring capability of the PENG sen-
sor, we examined its output variations under different external
conditions. First, we conducted environmental tests at five hu-
midity levels (20% to 100%). Thanks to the excellent hydropho-
bicity of the PTFE film encapsulation layer, the PENG sensor’s
output remained nearly unchanged across humidity gradients
(Figure S5a, Supporting Information). Next, we tested five tem-
perature gradients (20—40 °C) near body temperature. Similarly,
the sensor’s output showed minimal variations under the same
excitation, as temperatures in this range do not significantly al-
ter the piezoelectric coefficients of the material, ensuring stable
performance (Figure S5b, Supporting Information). Meanwhile,
to evaluate the impact of storage time on the PENG sensor’s
performance, we conducted comparative tests between a freshly
prepared sensor and one stored under ambient conditions for
three months. Under identical excitation, both sensors exhibited
comparable output waveforms, with no significant performance
degradation observed in the three-month aged device (Figure S6,
Supporting Information). This confirms the sensor’s excellent
stability and its suitability for long-term monitoring applications.
Finally, to simulate real-world skin conditions, we compared the
pulse detection waveforms in the states of dry skin and simulated
sweating. (Figure S7, Supporting Information). Consistent with
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the humidity tests, sweat had no noticeable impact on the PENG
sensor’s output, further proving its reliability in practical appli-
cations.

A series of characterizations were also conducted on the high-
precision PPG sensor. First, tests were performed on different
subjects, with one group consisting of participants of different
genders. It was found that the amplitude of the pulse wave was
unaffected by gender, whereas female subjects exhibited slightly
higher pulse frequencies than male subjects (Figure S8a, Sup-
porting Information). A second group compared subjects of dif-
ferent body weights, and similarly, the pulse wave amplitudes
remained nearly identical, while the heart rate of subjects with
higher body weight was slightly elevated compared to those with
normal weight (Figure S8b, Supporting Information). Next, sim-
ilar to PENG sensors, the effect of contact angle between the PPG
sensor and skin on pulse wave signals was examined (Figure S9,
Supporting Information). Measurements from the same subject
at different contact angles revealed that when the PPG sensor was
not properly aligned with the skin (i.e., angled contact), the pulse
wave amplitude decreased significantly. This finding reinforces
the necessity of a clip mechanism to ensure proper alignment
by simulating finger pressure. Additionally, the influence of am-
bient light on PPG sensor output was investigated (Figure S10,
Supporting Information). Experiments confirmed that darker en-
vironments enhance the PPG’s pulse wave signal, making the
system particularly suitable for nocturnal sleep monitoring. Fur-
thermore, the SpO, measurement function was characterized.
A continuous 5-min simultaneous recording of SpO, and pulse
wave curves from one subject was performed (Figure S11, Sup-
porting Information). During the test, occlusion of the brachial
artery was applied to temporarily restrict blood flow. Observations
showed that after flow restriction, SpO, first exhibited a slow rise
(values exceeding 100% indicated abnormal conditions) followed
by a rapid decline, while pulse wave amplitude dropped sharply
and eventually disappeared as pressure increased. Upon releas-
ing the occlusion, both SpO, and pulse waves quickly recovered,
demonstrating the PPG sensor’s reliability in continuous SpO,
and heart rate monitoring.

2.3. Mechanism of SAS and Characteristics of Physiological
Signals Change

Under normal sleep breathing conditions, as depicted in Figure
3a,b, the airway remains unobstructed, and the circulatory sys-
tem exhibits stable hemodynamics. Various physiological signals
recorded through PSG show characteristic patterns (Figure 3c):
nasal pressure airflow maintains stable amplitude with a 3-
5 s cycle period, thermosensitive signals show regular fluctua-
tions synchronous with breathing, and SpO, remains stable at
95-99% with minimal variation (<2%). The fingerprint PENG
placed on the wrist converts the subtle vibrations of the radial
artery into electrical signals, as shown in Figure 3d. Simultane-
ously, the PPG signal exhibits periodic undulations, with typi-
cal biphasic waveform characteristics, including the primary and
dicrotic waves, as shown in Figure 3e. The amplitude of the
waveform remains stable, with a variation coefficient of <10%.
Time-frequency feature analysis was performed on the PPW
and PPG waveforms using the short-time Fourier transform
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Figure 3. Mechanism of OSAS and Changes in Respiration and Pulse-Related Signals. a) State of the airway during normal breathing. b) State of the
circulatory system during normal breathing. c) Nasal pressure airflow signal, thermistor flow signal, and oxygen saturation signal monitored by PSG
during normal breathing. d) PPW signal during normal breathing. e) PPG signal during normal breathing. f) Time-frequency variation diagram of PPW
waveform during normal breathing. g) Time-frequency variation diagram of PPG waveform during normal breathing. h) Changes in the airway during
OSAS. i) Changes in the circulatory system during OSAS. j) Changes in nasal pressure airflow signal, thermistor signal, and oxygen saturation signal
monitored by PSG during OSAS. k) Changes in PPW signal during OSAS. I) Changes in PPG signal during OSAS. m) Time-frequency variation diagram
of PPG waveform during OSAS. n) Time-frequency variation diagram of PPG waveform during OSAS.

method. Figure 3f,g shows the spectral analysis of PPW and PPG
during normal sleep breathing, revealing relatively stable time-
frequency characteristics.

As shown in Figure 3h, taking the mechanism of obstructive
sleep apnea as an example, airway collapse and relaxation of the
respiratory muscles lead to airflow obstruction. This obstruction
causes a sharp reduction in oxygen intake, which in turn trig-
gers a drop in blood oxygen levels, stimulating chemoreceptors
and leading to excessive activation of the sympathetic nervous
system. This autonomic dysregulation results in increased pe-
ripheral vascular resistance, elevated blood pressure, and altered
heart rate variability. The intermittent hypoxia and reoxygenation
cycles lead to oxidative stress and systemic inflammation, which
further contribute to endothelial dysfunction. These pathophys-
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iological changes manifest in the pulse wave and photoplethys-
mography signals, where mechanical and optical properties of
the vasculature are altered, reflecting the underlying hemody-
namic disturbances. This cascade of events may result in the on-
set of cardiovascular diseases, such as atrial fibrillation, heart fail-
ure, and hypertension, along with systemic hemodynamic imbal-
ance, as depicted in Figure 3i.

Subsequently, a series of significant changes in physiological
signals are triggered, as depicted in Figure 3j. The nasal pres-
sure airflow signal recorded by PSG exhibits a marked reduction
in waveform amplitude (>90%) or complete disappearance dur-
ing the apnea event, while thermosensitive signals show minimal
fluctuation. Blood oxygen saturation (SpO,) starts to gradually de-
crease 10-20 s after the onset of apnea, and in severe cases, SpO,
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can drop below 90%. Figures S2 and S3 (Supporting Information)
demonstrate two distinct patterns in thoracoabdominal pressure
signals: During obstructive sleep apnea, thoracic and abdomi-
nal signals show increased synchronous oscillations, indicating
persistent respiratory effort despite airflow obstruction. In con-
trast, central sleep apnea exhibits minimal to no oscillation in
thoracoabdominal signals. Additionally, wrist-mounted PENG,
due to its superior mechanical-to-electrical conversion character-
istics, detects minute changes in radial artery vibrations during
apnea events (Figure 3k), with output amplitude decreasing by
over 50%. Previous studies have shown that during sleep apnea
events, PPG waveforms typically exhibit characteristic changes
including reduced amplitude (30-50%), delayed dicrotic waves,
and increased pulse transit time (PTT).[**’) In our monitoring
results, as shown in Figure 31, the PPG signal demonstrates de-
creased amplitude with altered baseline fluctuations and less dis-
tinct wave characteristics during apnea episodes. Time-frequency
analysis during apnea (Figure 3m,n) reveals distinct changes in
both signals’ spectral characteristics. The PPG frequency distri-
bution shows higher intensity and non-uniform patterns during
apnea compared to normal breathing, with significant alterations
in both time-domain measures (increased SDNN) and frequency-
domain measures (elevated LF/HF ratio), reflecting autonomic
nervous system modulation. The spectral analysis also reveals
marked changes in signal characteristics between normal and ap-
nea states across different frequency bands. In the later stages of
apnea, compensatory mechanisms trigger vascular constriction
and dilation, causing transient fluctuations in PPW signal am-
plitude, with the spectral characteristics displaying a multi-peak
distribution.[*#%] As the apnea event resolves, the signals gradu-
ally return to baseline levels.

Based on their distinctive signal characteristics, both wrist-
based PPG and PENG sensors show promise for sleep
apnea detection. PPG, through its ability to capture both
hemodynamic changes and blood oxygen saturation, pro-
vides multi-dimensional physiological information. Specifically,
PPG enables comprehensive analysis of the radial artery
pulse waveform—including amplitude, PTT, and dicrotic wave
features—along with rich HRV indicators and crucial blood oxy-
gen levels that directly indicate apneic events. Meanwhile, PENG,
with its exceptional piezoelectric response and high mechanical
sensitivity, excels at capturing subtle mechanical characteristics
like pulse waves and vascular pressure changes. It identifies ap-
nea events by analyzing the time-frequency characteristics of ra-
dial artery micro-vibration signals, including amplitude attenua-
tion, spectral energy shifts, and signal entropy changes. The syn-
ergistic integration of these two sensing modalities on the wrist
offers significant complementary advantages: PPG provides com-
prehensive cardiovascular and blood oxygen information, while
PENG delivers precise detection of subtle mechanical signals re-
lated to respiration and vascular dynamics. These complemen-
tary characteristics form a solid theoretical foundation for devel-
oping sleep apnea detection algorithms based on wrist-mounted
dual-modal sensing. By combining the multi-dimensional fea-
tures of PPG with the fine mechanical characteristics detected
by PENG, and utilizing advanced signal processing and machine
learning methods, it is expected to significantly improve the ac-
curacy, reliability, and real-time performance of sleep apnea de-
tection, while ensuring a comfortable user experience.
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2.4. Deep Learning-Based Intelligent Diagnosis Model for SAS

Here, we explored four different modeling approaches of ma-
chine learning algorithms: Logistic Regression (LR), Support
Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost),
and Vision Transformer (ViT). Though the original dataset
comprised various sensor signals across multiple dimensions,
including PPW, SpO,, PPG, ECG, EEG, airflow signals, and 24
other parameters, during the data modeling process, only PPG
and SpO, signals were used for modeling based on the labeled
data. The data used in this work is based on the PSG laboratory
database at Beijing Hospital. This database contains patient
admission data from the PSG laboratory between June 1, 2024,
and September 25, 2024. To minimize biases due to missing data
or motion artifacts, the training data for High Accuracy Model
(PPG) is extracted in the following ways: data segments with
missing or invalid parameters (such as ECG lead disconnections
or respiratory mask detachment) lasting more than 20 s were
excluded during data collection. Specifically, each patient’s PSG
data was divided into segments at 2-min long. After excluding
segments with missing or corrupted data, the sleep apnea
dataset included 3650 valid data segments. Additionally, the
normal dataset was randomly selected from PSG recordings of
normal individuals without sleep apnea, yielding 3,650 2-min
data segments (Figure 4a). Each data segment was labeled as
“with sleep apnea” or “without sleep apnea” based on PSG
results.

The dataset was randomly divided into training, validation, and
test in a ten-fold cross-validation way (training: validation: testing
= 7:2:1), in order to avoid overfitting while improving generaliza-
tion (Figure 4b). In the training subset of sleep apnea patients
and normal people, we first applied univariate logistic regres-
sion to identify independent variables associated with the out-
come. To further interpret the significance of low-dimensional
statistical features, we utilized Shapley values, computed using
the SHapley Additive exPlanations (SHAP) method. The results
(Figure 4d) indicated that the four statistical features of blood
oxygen level (mean, max, min, std) and the four statistical fea-
tures of peak-to-peak distance (mean, max, min, std) contributed
to the classification outcome. However, these low-dimensional
statistical features exhibited limited effectiveness in accurately
identifying SAS. This observation aligns with existing research,
which suggests that while oxygen desaturation levels and heart
rate variability may exhibit correlation with SAS severity, directly
using low-dimensional statistical features yields suboptimal per-
formance in detection.

To address this limitation, we propose the use of deep learn-
ing models to extract and represent relevant information in a
high-dimensional space. Specifically, we employ the ViT model,
which excels at handling complex data by utilizing self-attention
mechanisms. These mechanisms enable the ViT to capture intri-
cate spatial and temporal dependencies within the sensor signals,
such as PPG, SpO,, and PPW signals, which are critical for sleep
apnea detection. The ViT model processes these input signals by
dividing them into patches and learning relationships between
them. These patches are enhanced with positional embeddings
and additional class embeddings, allowing the model to effec-
tively capture both spatial and temporal dynamics. The feature
extraction process in the ViT model captures subtle variations in
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Figure 4. ViT Model based Sleep Apnea Detection and Performance Analysis. a) Workflow for sleep apnea classification. b) ViT Model architecture. c)
ROC curve. d) Feature contribution of SpO, and PPG signals. e) ViT Model Confusion matrix.

the physiological signals, including changes in blood oxygen lev-
els, pulse wave characteristics, and mechanical vibrations in the
blood vessels. This high-dimensional representation of features
helps the model identify complex patterns that are crucial for dis-
tinguishing between sleep apnea and normal sleep, which tradi-
tional low-dimensional methods may miss.

To evaluate the model’s performance comprehensively, we
utilized multiple metrics. One key component of our evalua-
tion framework is the confusion matrix (Figure 4e), which pro-
vides insights into accuracy (ACC), sensitivity (SEN), and speci-
ficity (SPE). Additionally, we used Receiver Operating Charac-
teristic (ROC) curves to visualize the trade-off between sensi-
tivity and specificity across different classification thresholds.
The Area Under the Curve (AUC) metric quantifies the model’s
overall discriminative capability, with values ranging from 0
to 1, where a value of 1 indicates perfect classification. The
AUC of the ROC curve serves as the primary performance met-
ric for assessing our model’s effectiveness. Statistical analysis
and modeling were implemented using Python (version 3.10),
with a significance level set at a two-tailed P-value <0.05. As
shown in the figure, the high-dimensional representations ex-
tracted by the ViT model for SAS-related features exhibited sig-
nificantly superior performance in SAS discrimination, achiev-
ing a substantial increase in classification accuracy from ~80%
in existing literature (based on HRV, blood oxygen, etc.) to
~95%.
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Table 1. Detection Performance of ViT model for SAS Detection.

Prediction model Specificity sensitivity Accuracy
High accuracy model (PPG) 0.9973 0.9945 0.9959
Highly sensitive model (PPW) 0.5417 0.9341 0.6857
Two-stage model (PPW+PPG) 0.9635 0.9251 0.9495

The performance metrics of conventional machine learning
models (LR, SVM, and XGBoost) detailed in Tables S2—S4 (Sup-
porting Information) demonstrate consistently lower detection
accuracy compared to the Vision Transformer model across all
evaluation parameters. The ViT model demonstrated the best per-
formance in distinguishing sleep apnea patients from normal in-
dividuals or normal sleep segments. As shown in Table 1, the
high-accuracy model based on PPG, blood oxygen (SpO,), and
hypoxic burden (HB) achieved a specificity of 0.9973, sensitivity
0f 0.9945, accuracy of 0.9959, and an AUC of 0.9982 (Figure 4c).
These results indicate that the high-accuracy model can effec-
tively distinguish between normal and abnormal signals with ex-
tremely high precision, almost without false positives or false
negatives, making it a highly reliable diagnostic tool. The highly
sensitive model (PPW), which classifies using only PPW signals,
achieved a sensitivity of 0.9341, indicating strong detection ca-
pability for abnormal signals, but with lower specificity of 0.5417
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and an overall accuracy of 0.6857. Therefore, the Two-stage model
(PPW + PPG) combines the advantages of the piezoelectric sen-
sor and the high-accuracy model. In the first step, the piezoelec-
tric sensor quickly screens for suspected abnormal signals, and
in the second step, the high-accuracy model further confirms
these signals. This two-step design significantly reduces overall
energy consumption while maintaining high classification per-
formance, achieving a specificity of 0.9635, sensitivity of 0.9251,
accuracy of 0.9495, and an AUC of 0.9857. This demonstrates
that the model can effectively balance performance and energy
consumption in resource-constrained environments, making it
a highly practical diagnostic solution.

2.5. The Application of Dual-Modal Wearable SAS Monitoring
System

Building on the dual-modal sensing system and two-stage detec-
tion strategy developed in this study, we propose a real-time sleep
apnea detection solution that leverages the low-power advantages
of piezoelectric sensors and the high-precision characteristics of
PPG sensors, enabling long-term monitoring with both energy
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efficiency and accuracy. In practical applications, the monitor-
ing device is secured to the user’s wrist using a C-shaped clamp
structure, ensuring stable contact with the skin via a fingertip-like
structure. The system operates in two distinct stages, as shown
in Figure 5a. The first stage is the continuous monitoring phase
using the piezoelectric sensor. Due to the low-power advantage
of the piezoelectric sensor, the system is capable of continuously
collecting pulse wave signals for 24 h. The device’s embedded
microcontroller processes the PPW signals in real time and trig-
gers the second-stage detection when a suspicious apnea event
(sensitivity: 0.9341) is detected. The second stage involves pre-
cise diagnostic detection using the PPG sensor. Once a warn-
ing is triggered by the piezoelectric sensor, the system activates
the PPG module for a 2-min high-precision detection, and the
data is then input into a pre-trained high-accuracy model (speci-
ficity: 0.9973, sensitivity: 0.9945) for analysis to confirm whether
an apnea event has occurred. This two-stage detection strategy
offers significant advantages: first, continuous pre-screening by
the piezoelectric sensor allows for the timely detection of po-
tential apnea events; second, the PPG module, which consumes
higher power, is only activated when necessary, significantly re-
ducing overall system energy consumption and enhancing device
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battery life; and finally, the verification provided by the high-
accuracy model ensures the reliability of the detection results
(overall accuracy: 0.9495).

The two-stage detection strategy of the dual-modal wearable
system is illustrated in Figure S12 (Supporting Information). In
this framework, PENG data is first transmitted via Bluetooth to
the host computer, where the high-sensitivity model performs an
initial prediction. If the output result of the model is “Yes”, an
instruction is sent to the MCU via Bluetooth to activate the PPG
module. The PPG data is then sent back to the host for evaluation
by the high-accuracy model. A sleep apnea event is confirmed if
the model result continues to output “Yes”, prompting data stor-
age and an alert. If the output result of any model is “No” or the
two-stage process is completed, the system proceeds to the next
cycle. Figure 5b displays partial overnight sleep data from volun-
teer subjects collected using our two-stage acquisition strategy,
including segments showing abnormal apnea events.

This low-power, non-invasive, wearable, and high-precision
detection device spans the entire process of SAS screening,
diagnosis, and treatment, making it suitable for both home and
hospital monitoring scenarios: 1) Home Monitoring (Figure 5c):
The core goal of home monitoring is to perform initial screening
for potential SAS patients using non-invasive methods, particu-
larly targeting individuals exhibiting symptoms such as snoring,
breathing pauses, or daytime sleepiness. After the device is
worn, the low-power piezoelectric sensor continuously monitors
pulse wave vibrations, and if any abnormal interruptions (e.g.,
irregular pulse wave amplitude or frequency) are detected, the
PPG sensor is activated to capture dynamic changes in blood
oxygen saturation and pulse wave. Data collected by the device is
analyzed using artificial intelligence algorithms to automatically
identify suspected apnea events, providing physicians with
supporting data for further diagnosis. 2) Hospital Monitoring
(Figure 5d): In hospital settings, the device serves as an auxiliary
tool for SAS diagnosis and treatment, playing an essential role in
both the initial screening and confirmation stages. It can be used
as a precursor tool to PSG testing, rapidly identifying high-risk
patients through dynamic monitoring and reducing the testing
burden for low-risk users, thus optimizing healthcare resource
allocation. 3) Continuous Health Management (Figure 5e): For
patients who have been diagnosed or are undergoing treatment,
the device provides continuous dynamic monitoring throughout
the treatment process. Prior to treatment, it can be used to assess
the frequency and progression of SAS, offering additional data
support for patients who have not yet received treatment and
helping physicians to devise the best treatment strategies. During
treatment, for patients receiving continuous positive airway pres-
sure (CPAP) therapy, the device can track the number of apneas
and other key indicators to comprehensively evaluate treatment
effectiveness.

For the power consumption characteristics of the two-stage
model, we need to emphasize that its actual average power con-
sumption highly depends on the frequency of OSAS events and
the duration of PPG sensor activation. The current model uses
a fixed 2-min PPG activation duration, which was chosen pri-
marily to meet the need for signal integrity capture. Although
a single sleep apnea event typically lasts only 10-30 s, the 2-min
monitoring window allows for a complete recording of the signal
changes before, during, and after the event, including warning
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features before the apnea begins, signal features during the ap-
nea, and the transitional period after normal breathing resumes.
This ensures that the model receives enough data to make high-
accuracy judgments. As clinical data accumulates and the model
is iteratively optimized, a foreseeable direction for technological
development is to shorten the required PPG activation duration
through more efficient feature extraction and signal processing
algorithms. This would allow reliable judgments with a shorter
signal collection window, maintaining or even improving detec-
tion accuracy, and providing significant support for the practical-
ity of long-term home sleep monitoring devices.

3. Conclusion

In summary, this study presents a significant advancement in
sleep apnea syndrome monitoring through the development of
a novel wrist-worn device integrating PENG and PPG sensors.
The core innovation lies in our bioinspired design approach,
which incorporates a unique fingertip-like structure mimick-
ing traditional Chinese medicine pulse diagnosis, achieving sta-
ble sensor-skin coupling and enhanced signals quality. The in-
tegration of PENG and PPG sensors provides complementary
advantages: PENG enables continuous, low-power monitoring
through direct mechanical signals detection, while PPG offers
comprehensive hemodynamic information for precise diagnosis.
Our two-stage detection strategy effectively balances power effi-
ciency and diagnostic accuracy. The first stage utilizes PENG’s
low power consumption characteristics for continuous prelimi-
nary screening, achieving 93.41% sensitivity. The second stage
activates PPG only when necessary, reaching 99.73% specificity
and 99.45% sensitivity in precise diagnosis. This approach main-
tains a high overall accuracy of 94.95% while significantly reduc-
ing power consumption compared to conventional single-modal
systems. Our Vision Transformer-based deep learning model
demonstrates superior performance in sleep apnea detection, im-
proving upon traditional methods based on low-dimensional sta-
tistical features. The clinical applications span from home-based
screening to hospital diagnosis and treatment monitoring. In
clinical environments, it serves as an efficient pre-screening tool
before PSG examinations and enables continuous assessment of
therapy effectiveness for patients undergoing CPAP treatment.
A limitation of this study is the lack of differentiation between
the various subtypes of SAS, such as OSA and CSA. Future work
will focus on algorithm refinement through large-scale clinical
trials and potential integration of additional biosensors to assess
sleep quality and related health parameters. The monitoring sys-
tem based on dual-modal sensing and intelligent algorithms pro-
vides a systematic solution for home screening, clinical diagno-
sis, and treatment management of SAS, offering substantial clin-
ical value in enhancing the diagnostic and therapeutic manage-
ment of sleep apnea syndrome.

4. Experimental Section

Device Fabrication:  First, the preparation of the elastic layer consisted
of two parts. The first part was a fingertip-like hemispherical structure with
a radius of 5 mm, which was made using PDMS. The second part was
the elastic recovery layer, with dimensions of 20 mm X 40 mm X 2 mm,
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prepared using Ecoflex 30. The specific procedure is as follows: First, a
PLA mold was printed using a 3D printer. Then, PDMS (with a mass ratio
of base liquid to curing agent of 10:1) and Ecoflex 30 (with a mass ratio of
Part A to Part B of 1:1) were prepared. After preparation, they were placed
in a vacuum drying oven for 10 min to remove air. Next, the PPG module
was positioned in the designed mold, and PDMS was slowly poured into
the mold. The mold was then placed in a constant temperature chamber
(at 70 °C) to cure for 2 h. After removal and cooling, the prepared Ecoflex
30 was poured into the mold. The mold was placed back in the constant
temperature chamber for an additional hour of heating. After removal and
demolding, a small amount of silicone gel was applied to the edges, and
after drying, the device was completed. Next was the preparation of the
Fingerprint PVDF. A silver-coated PVDF film with a thickness of 52 um
was cut to a size of 15 mm x 15 mm. Then, an 8 um thick PTFE tape was
attached to both the upper and lower surfaces of the PVDF. The assembly
was placed under a stamping machine, where a custom-made tool was
used to cut the multilayer film into a fingerprint pattern. Finally, wires were
adhered to the surface of the silver electrode using the PTFE tape.

Finite Element Analysis:  The finite element analysis was performed us-
ing COMSOL Multiphysics software (COMSOL Burlington, MA, USA),
employing a coupling strategy between the solid mechanics field and the
electrostatic field. In the solid mechanics setup, the bottom of the arc-
shaped structure with different curvature radii was constrained as fixed,
and the same constraint force of 1N was applied to the arc surface. The do-
main model of the fingerprint-like structure was set as a piezoelectric ma-
terial. In the electrostatic field setup, the upper surface of the fingerprint-
like structure was designated as a suspended electrode, while the lower
surface was grounded. The material properties of the arc-shaped structure
were set to PDMS, and the material properties of the fingerprint-like struc-
ture were set to PVDF. The study type was chosen as frequency domain
analysis, with the frequency set to 1 Hz, and the model was completed.

Characterization of Force-Electricity Relationship: A digital tensile force
gauge (Mark-10) was used to apply and measure pressure. An oscilloscope
(LeCroy, HDO6104) was used to measure the open-circuit voltage of the
PENG and PPG sensors, and to store the data during the force-electricity
test. An electrometer (Keithley 6517) was used to measure the current and
charge of the sensors during electrical test characterization.

Clinical Data Collection for High Accuracy Model (PPG): The clinical
data used for training the high-accuracy model were sourced from pa-
tients undergoing PSG at Beijing Hospital, with the aim of providing high-
quality samples for model training. The inclusion criteria consisted of pa-
tients presenting with habitual or disruptive snoring, sleep-related breath-
ing pauses or sensations of suffocation, unexplained daytime sleepiness
or lack of restful sleep, sleep-related arrhythmias, or decreased blood oxy-
gen saturation. The average apnea-hypopnea index (AHI) for the patients
was 24.5 (range: 0.8-82.3). The patients were divided into two groups: a
normal group (AHI < 5) with 8 participants, mean age 50 years (range:
40-75 years), mean BMI 18.5; and a severe OSAS group (AHI > 30) with
19 participants (15 men, 4 women), mean age 45.2 years (range: 25-73
years), mean BMI 25.11 (range: 21.6-32.5). All participants underwent an
average of 472.3 min of PSG monitoring (range: 452-540 min), and PPG
wave and SpO, data were extracted from the PSG recordings. Each pa-
tient’s monitoring data were segmented into 2-min intervals. After exclud-
ing segments with missing or invalid data, the normal group and the apnea
group contained 3650 segments each, for a total of 7300 data segments.
This ensured that the dataset covered a broad spectrum of features, pro-
viding multidimensional input for model training. As this was a retrospec-
tive study, approval for waiver of informed consent was granted.

Clinical Data Collection for Two-Stage Model (PPW + PPG): To eval-
uate the monitoring performance of the device in practical applications,
the study participants were also sourced from patients undergoing PSG
at Beijing Hospital. A total of 15 patients (11 males, 4 females) were en-
rolled, presenting symptoms such as habitual or disruptive snoring, sleep-
related breathing pauses or sensations of suffocation, unexplained day-
time sleepiness or lack of restful sleep, sleep-related arrhythmias, or de-
creased blood oxygen saturation. The mean age of the patients was 44.7
years (range: 24—68 years), with a mean BMI of 24.71 (range: 21-33.7).
All patients underwent overnight PSG monitoring in the Beijing Hospi-
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tal Sleep and Respiratory Monitoring Unit, with an average duration of
474.4 min (range: 454-540 min), during which device testing was also
conducted.

During the testing period, PSG data were interpreted by clinical experts.
Following the test, the average AHI for the patients was 23.7 (range: 0.6—
71.8). During the device testing, PPG wave and SpO, parameters from the
PSG data were extracted, while pulse wave signals from the device were
also collected, specifically including PPG signals and PPW signals. The
PPG signals were sampled at 256 Hz, while the PPW signals were sampled
at 50 Hz. These varying sampling frequencies were selected to balance
signals characteristics with power consumption, ensuring the device could
accurately capture dynamic signals under low-power conditions.

All monitoring data were divided into 2-min intervals to ensure tem-
poral consistency between the PSG data and the device-acquired signals,
while excluding invalid or corrupted data. Data collection strictly adhered
to the principles outlined in the Declaration of Helsinki and its subse-
quent revisions, and was approved by the Beijing Hospital Ethics Com-
mittee (Approval No: 2024BJYYEC-KY140-01). All participants signed an
informed consent form prior to the study, acknowledging the study’s pur-
pose, methods, potential risks, and privacy protection measures, ensuring
that data collection and processing complied with ethical standards.
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