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Abstract: Bone injuries are common in clinical practice. Given the clear disadvantages of autologous
bone grafting, more efficient and safer bone grafts need to be developed. Bone is a multidirectional
and anisotropic piezoelectric material that exhibits an electrical microenvironment; therefore, electrical
signals play a very important role in the process of bone repair, which can effectively promote
osteoblast differentiation, migration, and bone regeneration. Piezoelectric materials can generate
electricity under mechanical stress without requiring an external power supply; therefore, using it
as a bone implant capable of harnessing the body’s kinetic energy to generate the electrical signals
needed for bone growth is very promising for bone regeneration. At the same time, devices composed
of piezoelectric material using electromechanical conversion technology can effectively monitor the
structural health of bone, which facilitates the adjustment of the treatment plan at any time. In
this paper, the mechanism and classification of piezoelectric materials and their applications in the
cell, tissue, sensing, and repair indicator monitoring aspects in the process of bone regeneration are
systematically reviewed.

Keywords: piezoelectric materials; electrical stimulation; devices; biomedical engineering applications

1. Introduction

Due to diseases, car accidents, etc., bone damage has become a common condition.
Bone is a high-density connective tissue composed of cells, an extracellular matrix (ECM),
and bone colloidal fibers. Bone is divided into dense bone and cancellous bone. The key
feature of bone that distinguishes it from other tissues is that it has a large amount of
calcium salt deposits in its extracellular matrix, which gives it a hard characteristic [1,2].
Osteocytes are divided into three types of cells, namely, osteoblasts, osteoclasts, and
osteocytes. Osteoblasts can secrete three times the volume of matrix in three to four days,
and then become osteocytes ambushed in them. Bone cells are the main components of bone
tissue. Osteoclasts, together with macrophages, can absorb bone. Due to the presence of
different species of cells in the ECM, the ECM of bone is stiff, whereas the ECM of cartilage
is soft. Meanwhile, all connective tissues, including bone, are highly vascularized [3]. When
performing bone restoration, the gold standard is autologous bone grafting. However,
autologous bone grafting has the problem of insufficient bone sources and can easily lead
to secondary injury. Contemporary treatment methods include fixing the injury site to
allow it to grow on its own; researchers have also developed bone grafting combined with
appropriate external stimulation such as electrical stimulation, ultrasound stimulation, a
gradient hypoxic environment, etc.
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Electricity is very important for living organisms. Muscle contraction and nerve
impulse induction all require the presence of electrical signals. Since the last century,
researchers have discovered that there is a piezoelectric effect in bone, which generates
an electrical signal when stress is applied to the bone. The electrical signals in bone come
from collagen [4]. When electrical signals stimulate the bone, this stimulates cell surface
membrane proteins or stimulates the Ca2+ voltage-gated channel on the cell membrane
surface, resulting in a change in the intracellular and extracellular concentration of Ca2+.
Direct current stimulation can also promote the cell secretion of prostaglandins (PGE2), mor-
phogens, and growth factors, thereby affecting the cell [5]. Therefore, electrical stimulation
has a positive effect on bone tissue [6].

Currently, the most commonly used clinical means of treating bone injury are long-
term fixation, bone grafting, and intramedullary nailing. Electrical stimulation was in-
troduced in fracture treatment in the 1980s, and studies have shown that direct current
stimulation of approximately 1 Hz has a good effect on fracture treatment. Traditional
invasive methods of electrical stimulation require at least two surgeries—one to implant the
electrode and one to remove the electrode—easily resulting in bone infection. Percutaneous
leads and external power can also cause inconvenience during treatment.

The use of piezoelectric materials can effectively simulate the internal electrical en-
vironment of bone and effectively promote the healing of bone damage. Additionally,
piezoelectric materials can produce electrical stimulation without an external power supply,
exhibiting characteristics of convenience and good biological adaptability. Piezoelectric
materials were first used as orthopedic implants in the 1980s. Piezoelectric materials used
as scaffold materials include piezoelectric ceramics, piezoelectric polymers, or piezoelectric
ceramic–polymer composite materials. Moreover, some piezoelectric devices can detect the
health of bones through mechanical electrical impedance technology, including whether
the bones are in a state of osteoporosis or whether bone injuries have healed, and can also
promote bone healing by providing low-magnitude, high-frequency (LMHF) vibration [7,8].
As a kind of smart material [9], piezoelectric material can realize the mutual conversion
of electrical and mechanical signals and can be used as a brake and a sensor at the same
time; while using it as a brake, it can generate electrical signals by using the kinetic energy
generated by the movement in the body. It is environmentally friendly because it does
not require an external power supply, and it is economically friendly because it is possi-
ble to avoid secondary removal surgery by using a biodegradable piezoelectric material.
Additionally, the material itself is designable, and there is plenty of room for cost reduction.

This review focuses on the application of the piezoelectric effect in bone regeneration,
starting with piezoelectric materials and piezoelectric devices. The latest advances in
recent years at the cellular level and tissue level, as well as in detecting and monitoring
the effectiveness of treatment, are reviewed. This review will inspire subsequent bioengi-
neering researchers to develop more advanced materials and technologies and promote
clinical translation.

Using “bone” and “piezoelectricity” as title words to search on the Web of Science
shows the below results (Figure 1). As you can see from this graph, there has been a
particularly large amount of research combining piezoelectricity with bone in the last
decade, which reveals that this is a very promising area of research.
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2. Classification and Mechanism of Piezoelectric Material and Devices
2.1. Mechanism of the Piezoelectric Effect

The phenomenon of piezoelectricity was first discovered by the Curie brothers in 1880
by identifying the phenomenon that electric charge is generated when force is applied
to quartz crystals and Rochelle salt [10]. In the 1950s, scientists discovered that there is
also a piezoelectric effect in biological tissues [11], and in the 1980s, scientists first used
piezoelectric materials as an option for bone implant materials [12]. The piezoelectric effect
is divided into the direct piezoelectric effect and reverse piezoelectric effect (Figure 2a) [13]:
the direct piezoelectric effect refers to the mechanical force applied to the material leading
to the polarization of the dipole moment inside the material to generate electric charges,
whereas the reverse piezoelectric effect refers to the mechanical deformation of the material
itself under the action of the electric field.

Polarization is generated by corona polarization and thermal polarization: thermal
polarization can be polarized in oil/liquid and can also be polarized in the air, which is
generally used for the polarization of biological materials to prevent pollution. In addition,
the value of voltage and temperature depends on the material itself and the degree of
target polarization. The dij (piezoelectric constant) is used to characterize the piezoelectric
properties of piezoelectric materials: its value refers to the amount of charge generated
when stress is applied to the material, or the mechanical stress generated under a unit
electric field. The subscript ‘i’ refers to the direction of polarization of the dipole moment,
or the direction of the applied electric field; the subscript ‘j’ refers to the direction in which
strain is generated or the stress is applied [6].

The most classic piezoelectric material is zinc oxide (ZnO). The wurtzite structure of
ZnO is shown in Figure 2b [13], exhibiting many tetrahedrons with Zn2+ and O2− vertices
stacked in parallel and alternately. When no external force is present, its positive and
negative charge centers are coincident. However, in the presence of an external force,
its positive and negative charge centers become dipoles that can generate piezoelectric
potential. The potential distribution of ZnO nanowires (NWs) under the action of external
force is shown in Figure 2c [13]. Here, 2, 3, and 4 show the potential distribution under
tensile, compressive, and rotational forces, respectively; 5 and 6 indicate the joint action of
tensile force and rotational force and the combination of compression force and rotational
force, respectively. The relationship between the piezoelectric potential and the output
current of a piezoelectric nanogenerator is shown in Figure 2c [13], when the atomic force
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microscopy tip (T) pushes from the low end of the surface of ZnO nanowires (NWs) to the
top, causing electrons to flow in the loop, resulting in an output of current.
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2.2. Classification of Piezoelectric Material

Piezoelectric materials are crystalline materials that can convert mechanical to electrical
energy when subjected to pressure. More and more piezoelectric materials are being
developed and manufactured to meet the needs of different applications. These materials
can be classified into four main categories according to their chemical composition and
physical structure: piezoelectric single crystals [14], piezoelectric ceramics [15], piezoelectric
polymers [16], and composite piezoelectric materials [17].

2.2.1. Piezoelectric Single Crystals

Piezoelectric single crystals—crystals developed in a long-range, organized way in
accordance with the dot matrix in crystal space—are generally referred to as piezoelectric
crystals [18–20]. Their crystal structure lacks a center of symmetry, and when subjected
to mechanical stress from the outside, the positive and negative charge centers within
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the crystal are moved and polarized, causing the accumulation of charges on some of its
surfaces that are linearly proportional to the force, of equal magnitude, and the opposite
sign, resulting in piezoelectricity (Figure 3a) [14]. Piezoelectric crystals include GaN
(gallium nitride) [21,22], SiC (silicon carbide) [23], ZnO [24,25], etc.
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polymers [16]; (d) schematic diagram of the piezoelectric mechanism of bio-piezoelectric materials
(i) glycine; (ii) collagen [19].

2.2.2. Piezoelectric Ceramics

Piezoelectric ceramics are polycrystalline piezoelectric materials that are generally fer-
roelectric. The spontaneous polarization direction of each grain in the ceramic is haphazard,
and the piezoelectric effects between the grains cancel each other out. Piezoelectric ceramics
without polarization treatment do not show piezoelectric effects macroscopically. Therefore,
to synthesize piezoelectric ceramics with a piezoelectric effect, a strong DC (direct current)
electric field must be added to the ceramics so that the electric domains of each grain
are turned along the electric field direction. Compared with piezoelectric monocrystals,
piezoelectric ceramics have the advantages of a simple preparation process, strong piezo-
electricity, high dielectric constant, can be made into arbitrary shape components, have a
low cost, and are suitable for mass production. In recent decades, piezoelectric ceramics
have been widely used in electronic information, integrated circuits, computers, aerospace,
marine mapping, automotive, and energy, as well as other parts of daily life [26,27]. For
instance, steady piezoelectric and dielectric qualities are often necessary for piezoelectric
ceramics to function as piezoelectric oscillators. Piezoelectric ceramics are required to have
a high electromechanical coupling coefficient and a large dielectric constant to achieve the
conversion of mechanical and electrical energy in a transducer application. Using conven-
tional inorganic chalcogenide materials such as barium titanate (BTO and BaTiO3) [18] and
lead zirconate titanate (PZT and PbZrxTi1-xO3) [15] created for various applications such as
capacitors, piezoelectric devices, and ferroelectric devices, thousands of compounds with a
chalcogenide structure (ABX3, where A and B are cations and X is an anion, respectively)
have been reported (Figure 3b) [28].
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2.2.3. Piezoelectric Polymers

The piezoelectricity of piezoelectric polymers is mainly due to the ferroelectric phase
with spontaneous polarization or the crystalline phase with asymmetric centers. Through
mechanical stretching or high-temperature and high-voltage DC polarization, the dis-
ordered dipole orientation within the piezoelectric polymer crystals can be arranged to
achieve excellent piezoelectricity [16]. Under the action of external mechanical forces, strain
is induced within the piezoelectric polymer to order the dipoles in the direction of the force,
thus inducing an electric charge on both surfaces of the material and converting the weak
mechanical vibration energy into electrical energy (Figure 3c) [16,29]. The piezoelectric
polymer materials that have been studied and widely used include polyvinylidene fluoride
(PVDF) [30,31] and its copolymer (PVDF-TrFE) [32], terpolymer (PVDF-TrFE-CFE) [33],
and poly(levulinic acid) (PLLA) [34], with good biocompatibility. Piezoelectric polymer
materials have the advantages of good flexibility, excellent processability, low density, low
impedance, high piezoelectric coefficient, and good biocompatibility, and they are widely
used in the fields of pressure sensing, energy harvesting, and biomedicine [35–37].

2.2.4. Bio-Piezoelectric Materials

In 1941, Martin discovered that, when wool and hair rubbed against each other, the
induced positive and negative frictional charges changed with the direction of friction [38].
This effect is caused by fiber epidermal cells and was the first time that a biological material
was found to have piezoelectric properties. In 1957, Fukada studied the piezoelectricity in
dry bones, showing that it originated from the in-plane piezoelectric effect of collagen; this
experimental result greatly contributed to the progress of the study of bio-piezoelectricity.
The study of the piezoelectric effect in bone has been the focus of bio-piezoelectricity
research since then [39]. Subsequently, Fukada et al. investigated the piezoelectricity of
the Achilles tendon and concluded that its piezoelectricity mainly comes from collagen
fibers arranged along the long axis of the Achilles tendon and solved the piezoelectric
coefficient matrix of collagen fibers [40]. In addition to the hard tissues in living organisms,
researchers have conducted numerous studies on soft tissues in living organisms, including
blood vessels [41], skin [42], muscles [43], and nerves [44]; the results have shown that a
large number of soft tissues have piezoelectric properties. The piezoelectricity of biological
tissues is generally considered to originate from oriented biopolymer molecules. Oriented
long-chain fiber molecules undergo the deformation of crosslinks in the molecule after
being subjected to shear stress, causing charge displacement (Figure 3(dii)). Fukada et al.
further showed, through studies on synthetic peptides and optically active polymers,
that the internal rotation of a large number of dipoles formed by -CO and -NH leads to
piezoelectric effects in biomaterials [45]. The structure of their side chains determines how
distinct amino acids differ from one another. Glycine, for instance, crystallizes into three
distinct structures, depending on the crystallization circumstances (Figure 3(di)). Glycine
crystals have crystal symmetry and are thus not piezoelectric. Glycine has ferroelectric
properties and non-centrosymmetric crystal structures [19]. Biopiezoelectric materials
have a wider range of uses in biomedicine because they are more biocompatible than
conventional piezoelectric materials.

2.2.5. Composite Piezoelectric Materials

Piezoelectric composites usually refer to piezoelectric materials obtained by dispersing in-
organic piezoelectric materials with nanostructures (e.g., nanoparticles, nanowires, nanosheets,
etc.) into a matrix of piezoelectric polymers by a simple preparation process [46]. Common
piezoelectric composites include lead zirconate titanate (PZT)/polymer [47,48], lead titanate
(PT)/polymer, etc. This composite material combines both the excellent piezoelectricity of or-
ganic piezoelectric materials and the flexibility and fatigue resistance of piezoelectric polymers,
improving the shortcomings of single piezoelectric materials. In addition, there is great flexibil-
ity in material compound selection, and these advantages expand the scope of the application
of piezoelectric composites in the field of flexible devices [17]. For example, the PVDF/SiC
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composites prepared by Rasoolzadeh et al. have greatly enhanced piezoelectric properties
due to higher β-phase fraction and improved charge transfer near the semiconductor SiC
nanoparticles [49].

2.3. Classification of Piezoelectric Devices

Piezoelectric devices usually refer to a class of electronic or optoelectronic devices based
on the piezoelectric effect, and their most basic regulatory units are usually called piezoelectric
transistors. They can roughly be divided into two categories according to their structure and
operating mechanism, namely, field-effect transistors and piezoelectronic transistors.

Conventional field effect transistors usually adopt the basic three-electrode structure
of the source, drain, and gate. The principle is to apply a driving voltage signal between
the source and drain, and then provide a gate voltage signal to regulate the channel width
of carriers in the field effect transistor to achieve the regulation of the electrical transport
characteristics of the transistor (Figure 4a) [50]. With the extensive and intensive research
in the field of piezoelectrics, many piezoelectric semiconductor materials have been used
to fabricate piezoelectric transistors, such as ZnO (nanowires [51], thin films [52]), GaN
(nanorods [53], nanowires [54], nanoribbons [55], nanotubes [56]), CdS (nanowires [57]),
CdSe (nanowires [58,59]), InAs (nanowires [60]), InN (nanopillars [61]), and other crystal
structures such as ZnSnO3 (nanowires [62,63]) and CdTe (nanowires [64]). In addition,
transition metal sulfides (TMDCs), which have a centrosymmetric crystal structure in the
bulk state, have been found to exhibit piezoelectric effects at the atomic thickness layer,
thus providing a new low-scale material option for piezoelectronic devices.
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Unlike conventional field-effect transistors, piezoelectric transistors use the piezoelec-
tric potential generated by piezoelectrically polarized bound charges as the gate voltage
signal to regulate the carrier transport characteristics of the transistor instead of the gate
voltage (Figure 4b) [50]. A typical representative is the piezoelectronic nanogenerator. In
2006, piezoelectric nanogenerators were first proposed [65], using the tip of an atomic force
microscope to poke a ZnO nanowire and measuring a nanowire piezoelectric output signal
of 8 mV. The output power of a single ZnO nanowire is very small. To increase the output
power of the piezoelectric nanogenerator, as well as to move away from the dependence on
AFM and transform the piezoelectric nanogenerator from a concept to a practical technol-
ogy, an innovative design of the structure of the piezoelectric nanogenerator is required.
Based on the existing piezoelectric nanogenerator designs, piezoelectric nanogenerators
can be broadly classified into two categories: Schottky-contact-structure-based piezoelectric
nanogenerators, and sandwich-structure-based piezoelectric nanogenerators. Taking ZnO
as an example, the operating principle of ZnO nanogenerators exploits the coupling of the
semiconductor properties of ZnO material with piezoelectric properties. The initial study
of the piezoelectric properties of ZnO utilized ZnO nanorods (Figure 4c) that were allowed
to bend under the action of an AFM probe. This deformation causes a certain deviation
of Zn2+ and O2-, whose original centers of symmetry coincide within ZnO, to generate a
piezoelectric potential, with the stretched side of the nanorod gathering a positive charge,
and thus a positive potential, and the compressed side gathering a negative charge, i.e., a
negative potential [65].

3. Bone Regeneration Based on Piezoelectric Material and Devices
3.1. Piezoelectric Materials and Devices Applied in Cells

Bone healing is the process of repairing a fracture or bone defect, which is essentially a
regenerative process after a bone injury. Ideally, after the repair process, only the bone tissue
is rebuilt without scar formation. However, studies have found that 5% to 10% of patients
still suffer damage during the bone healing process, resulting in delayed bone healing
or the non-healing of bone. Cell proliferation and differentiation are essential biological
processes in the bone healing process. The cells of bone tissue mainly include bone marrow
mesenchymal stem cells (BMSCs), osteoblasts, osteocytes, and osteoclasts. Only osteocytes
are present within the bone tissue, while the other three types of cells are located at the edges
of the bone tissue. Currently available studies on the piezoelectric stimulation of bone tissue
cells have focused on osteogenic and osteoblastic cells. The state of the cells can be changed
by the stimulation of tissue cells, which can modify the Na+ (Ca2+) permeability of excitable
cells, resulting in action potentials and changes in the internal environment brought on
by changes in the Na+ and K+ ion channels. Endogenous electrical signals play a critical
role in controlling cell fate, tissue development, and regeneration. The endogenous direct
current electric field (DC EF), which is typically produced by intracellular ion transport,
plays an indispensable role in maintaining and manipulating the normal physiological
function and activity of the ECM. Reactive bioelectrical impulses, in particular, affect the
behavioral guidance of cells in bone damage.

Osteoblasts, in particular, release a variety of bioactive compounds that regulate
and impact the process of bone formation and reconstruction. Osteoblasts are primarily
differentiated from mesenchymal progenitor cells in the stroma of the inner and outer
periosteum and bone marrow. The differentiation and value-added of osteoblasts can be
successfully aided by electrical stimulation. In the field of orthopedics, promoting bone
formation using currents of 5 to 100 microamps has been found to have beneficial effects.
Osteoblasts can specifically secrete a variety of bioactive substances that regulate and
influence the process of bone formation and reconstruction. In order to play a significant
role in an electrical stimulation treatment system for osteogenic differentiation, Zhang
et al. created a self-powered pulsed DC stimulation device for bone repair that integrates a
thermally processed, shape memory compression-based, arch-shaped structured electrical
nanogenerator (sm-PENG) and a fracture fixation splint (Figure 5a) [66]. Under long-term



Nanomaterials 2022, 12, 4386 9 of 20

culture conditions, the sm-PENG can effectively promote cell proliferation and alkaline
phosphatase (ALP) activity of the cells which, in turn, promotes calcium deposition, the
extracellular mechanism of mineralization, and osteogenic differentiation. The short-circuit
current of sm-PENG is up to 20 µA. This device has a wide range of potential applications
in bone restoration.
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BMSCs can differentiate into tissue cells of mesodermal and neuroectodermal origin,
including myogenic cells, hepatocytes, osteoblasts, chondrocytes, fibroblasts, glial cells,
neuronal cells, hematopoietic stem cells, and stromal cells. Bone marrow mesenchymal
stem cells alone can better promote fracture healing and cartilage injury repair. Yu et al.
designed an implantable self-powered generator (ISPG) to address the problem of en-
ergy supply for driving electronic devices and electrical stimulation therapies in vivo
(Figure 5b) [67]. This ISPG is a self-powered regional electrical-environment-configured
host-coupled bio-nanogenerator (HCBG) for bone regeneration. The implanted matrix
fluid and the stimulated object are connected to the HCBG, which features a porous electret
nanofiber mat, producing a coupling effect. This bio-nanogenerator not only eliminates the
drawbacks of conventional ISPG but also accomplishes electrical stimulation therapy and
biomechanical energy scavenging. The ability of bone marrow mesenchymal stem cells to
differentiate into osteoblasts in vitro and regenerate bone in vivo was greatly improved.
Li et al. induced endogenous electrical stimulation using polarity-controlled GaN/AlGaN
materials to improve bone regeneration (Figure 5c) [68]. It was possible to create charged
GaN/AlGaN surfaces with opposing polarity and zeta potentials within the physiological
potential range by manipulating the direction and amplitude of piezoelectricity and sponta-
neous polarization in the functional layer (GaN). In vivo, Ga-polar GaN/AlGaN nanofilms
(negatively charged surfaces) demonstrated faster and more effective bone healing than
N-polar GaN/AlGaN (positively charged surfaces). Additionally, the in vitro adhesion,
migration, recruitment, and osteogenic differentiation of bone marrow mesenchymal stem
cells were all greatly aided by Ga-polar GaN/AlGaN heterostructures. Piezoelectric bioma-
terials are being developed and used to cure bone abnormalities more frequently. Recent
advances have made electret materials into promising electroactive materials. The polar-
ized charge of electret material is held inside or on the surface after being polarized with
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an external electric field, generating a steady built-in potential that produces endogenous
electrical stimulation. For bone regeneration, Qiao et al. created a sandwich-shaped SiO2
electret coupled with a poly(dimethyl siloxane) (SiO2/PDMS) electroactive membrane [69].
By providing steady and long-lasting endogenous electrical stimulation and reducing
potential degradation compared with pure PDMS membranes, electret SiO2/PDMS mem-
branes can effectively stimulate bone regeneration. This electret composite membrane
exhibits a steady biopotential in surface potential measurements, which can effectively
boost cellular activity and accelerate the osteogenic differentiation of BMSCs. This mem-
brane has excellent therapeutic applicability in orthopedic and craniofacial surgery. It is
well known that controlling the spontaneous and piezoelectric polarization of GaN/AlGaN
enables the effective control of its surface polarity (SP and PE, respectively).

3.2. Piezoelectric Material and Devices Applied in Tissue

Bone tissue is composed of a variety of bone cells including the extracellular ma-
trix. Previously, piezoelectric materials have focused on promoting cell proliferation,
differentiation, and migration. However, in practical applications, the shape, size, type,
and characteristics of the bone tissue need to be taken into account to design materials
that are targeted to achieve better bone regeneration results. Here, we summarize sev-
eral typical piezoelectric materials designed for bone regeneration applications based on
tissue characteristics.

Cartilage is tissue located at the end of the bone that forms a joint and is a soft and
flexible spongy structure. Once the cartilage is injured, it is difficult to recover because it
does not exhibit factual vascularization and has a complex structure with viscoelasticity
and anisotropy. In clinical practice, cartilage injury often leads to chronic pain, and simple
medication does not help. However, treatments such as autologous or allogeneic osteochon-
dral grafts have limitations in the size of injured cartilage and donor zone infection; the
most common contemporary treatment is still joint replacement surgery. Chondrocytes and
mesenchymal stem cell (MSC)-based tissue engineering scaffolds are widely reported in the
literature, and the application of external physical stimuli by smart biomaterial scaffolds
can be translated into various signals which can be recognized by the cells. Piezoelectric ma-
terials can generate electrical signals when mechanical loads are applied, which ultimately
stimulate growth factor synthesis on the cell surface through calmodulin. The PHBV copoly-
mer has low cytotoxicity, good piezoelectricity, and a longer degradation time, making it
suitable for use in tissue engineering for cartilage regeneration. Barium titanate is another
common piezoelectric material with high piezoelectric properties. Hence, Jacob et al. used
an electrostatic spinning technique to simulate the structure and piezoelectric coefficient of
natural cartilage using poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) doped with
BaTiO3 (Figure 6a) [70]. The ability to not only promote the proliferation, migration, and
growth of human mesenchymal stem cell-derived chondrocytes, but also the expression of
the collagen II gene, has been demonstrated experimentally. Compared with unpolarized
pure PHBV material or without BaTiO3, this piezoelectric scaffold can effectively promote
the regeneration of cartilage.
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Figure 6. (a) Manufacturing processes and bionic applications of degradable piezoelectric scaffolds
and the induction of chondrocytes based on the relationship between degradation and piezoelectric
effects [70]; (b) biodegradable piezoelectric PLLA nanofibers are used in combination with non-
invasive ultrasound (US) to generate stable electrical stimulation for bone regeneration [71]; (c) MPZs
were constructed to mimic piezoelectric microregions in native bone for bone defect repair (MPZs
were manufactured by setting selective laser irradiation and polarization on the KNN surface, then
implanted to a bone defect model to assess bone regeneration) [72]; (d) schematic diagram of the
manufacturing process and potential advantages of PVFT-BGM scaffold for bone regeneration [73].

The surface of the biological scaffold is charged; thus, it can adsorb beneficial pro-
teins [74], thereby stimulating a variety of protein pathways and achieving the purpose of
stimulating osteogenesis [75]. In addition, the surface of bone tissue is inherently charged;
therefore, linking electrical signals to biological scaffolds can facilitate the effect of os-
teogenesis [76]. Due to the characteristics of piezoelectricity, piezoelectric materials can
generate electrical signals through the piezoelectric effect under mechanical movement [77],
avoiding the drawbacks of percutaneous wires and applied batteries, resulting in a higher
application value in osteogenesis. Ritopa Das et al. designed a biological scaffold that com-
bines piezoelectric nanofiber PLLA (Poly(L-lactic acid)) and vitro ultrasound stimulation to
achieve the effect of remote-controlled electrical stimulation without the need for batteries
(Figure 6b) [71]. In addition, PLLA material is biodegradable, and the degradation time
is relatively long, which can match the time of osteogenesis. Although there are PLLA
scaffolds for bone regeneration in cats, these are applied through the passive movement
of cats. This material can control the time and quantity of electrical signals generated by
ultrasound. Using electrospinning to manufacture piezoelectric nanofibers, materials with
different piezoelectric signals were produced by controlling the speed of a collector drum,
and the output of the piezoelectric signal for 26 days was evaluated in vitro, indicating
the long-term effectiveness of the material. In vitro experiments to promote the osteogenic



Nanomaterials 2022, 12, 4386 12 of 20

differentiation of stem cells—by measuring the alkaline phosphatase (ALP), the Alizarin
red assay, and the expression of osteocalcin and osterix osteogenic genes—proved that
the stronger the piezoelectric signal (the material which uses higher speed in the manu-
facturing process and the using of ultrasound), the better the osteogenic differentiation.
Subsequently, a mouse skull defect model experiment was carried out, in which a 3.5 mm
bone defect was made in the mouse skull, then the material was placed and ultrasound
treatment was performed. Finally, X-ray imaging and nuclear fast red ALP staining, as well
as the expression of Collagen 3.6-GFP-topaz fluorescent reporter genes and toluidine blue
staining showed that the effect of piezoelectric materials plus ultrasound is optimal for the
repair of bone defects.

The microenvironment in which the bone is located can be regarded as an area
composed of micro-regions of piezoelectric collagen materials and non-piezoelectric non-
collagen materials [78]. To imitate the electrical signal of this scale, Peng Yu et al. used
K0.5Na0.5NbO3 (KNN) ceramics, and by selectively performing laser irradiation, the mixed
phase of the quadrature-phase and the tetragonal phase with high voltage became a tetrag-
onal phase with low-voltage electricity (Figure 6c) [72]. Thus, the material surface of the
high-voltage electrical region and the low-voltage electrical region that simulates the bone
microenvironment was formed. Compared with unaltered KNN ceramics, it was demon-
strated that the markers of osteogenic differentiation, Runt-related transcription factor 2
(Runx2), and ALP were more expressed in cells cultured on the surface of KNN ceramics
with high- and low-voltage regions, indicating that the surface of the material similar to
bone piezoelectric microstrips was more conducive to osteogenic differentiation. Then,
conducting a rabbit femoral condyle implantation experiment, the micro-CT results showed
that the microscale piezoelectric structures (MPZs) had the best osteogenic performance
compared with the control group of KNN and hydroxyapatite (HA).

The difficulty of treatment varies with the size of the bone defect. In small bone
defects, the defect site is rapidly covered by periosteum, which encourages osteoblasts
to migrate, proliferate, and differentiate at the opening wound. This results in the rapid
formation of new bone at the defect site. Bone defects exceeding a critical size are not
completely covered by the periosteum, leading to slow bone healing or osteointegration.
In response, Zhao et al. designed a novel bio-scaffold material to mimic the periosteal
structure and bone microenvironment. By loading bioactive glass micro-nano particles
onto poly(vinylidene fluoride-trifluoroethylene), a combination of piezoelectric polymers
and bioactive glass nanofibers (PVFT-BGM) was made to simulate the periosteal structure
(Figure 6d) [73]. The piezoelectric polymer is responsible for providing electrical signals
to simulate the electrical microenvironment of bone. Bioactive glass micro-nano particles
with Ca2+, phosphorus ions (P4+), and other mineral ions on them can be released, which
facilitates the formation of bone minerals. Further mechanistic studies have confirmed
that PVFT-BGM activates Ca2+-sensitive receptors (CaSR) in osteoblasts while affecting
downstream signaling pathways. The ultimate goal of promoting the growth, proliferation,
and differentiation of bone marrow stem cells, and the formation of periosteal-like tissue
and bone regeneration, was observed in animal experiments.

3.3. Piezoelectric Material and Devices Applied in Sensing and Repair Indicator Monitoring

In fracture treatment, there is usually a consequence of non-union in 5–10% of cases,
which means that newly generated bone from the bone defect is not connected to the
peripheral bone [79], thus requiring follow-up treatment, which lasts a long time and
is expensive [80]. One commonly used treatment is systemic low-magnitude, LMHF
vibration, which promotes bone connection by applying a mechanical load. However,
this method produces unwanted systemic effects throughout the body and may cause
side effects through hormonal changes. Faced with this situation, Bradley D. Nelson et al,
designed a piezoelectric bone fixation plate that can be implanted at the non-connected
part of the bone (Figure 7a), realized the mechanical vibration of the non-connected area,
and evaluated the effectiveness of the treatment by identifying the longitudinal trend in
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bone stiffness [81]. Using piezoelectric materials as both sensors and brakes, it has been
proven through 10,000 fatigue tests that the material can maintain reliability in long-term
bone regeneration tests over 8 weeks [82].
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Figure 7. (a) Piezoelectric fixation plate mounted on the femur of a rat [81]; (b) (i) preparation of
bone samples, (i-1) bone plate sample of left femoral specimen, (i-2) bone plate sample of right
femoral specimen, (ii) photograph of the bone plate, and (iii) bone ultrasound transducer [82];
(c) (i) experimental apparatus for mechanical electrical impedance measurements, (ii) the dimensions
and materials of the monitoring structure, and (iii) materials used for the experiment [83]; (d) bones
with DBPS and NBPS configurations [84]; (e) compliant layer adaptive composite stacks (i) 0.0 mm
CLACS, and (ii) 0.8 mm CLACS [85].

Piezoelectric materials are used for bone repair because the electric field generated by
piezoelectric materials in the ultrasound state promotes osteoblast migration and differ-
entiation [86]. The frequency of ultrasound to promote bone regeneration is generally in
the megahertz range [87]. Therefore, understanding the degree of piezoelectric properties
of the bone itself in the megahertz segment plays an important role in bone repair. A
transducer is an instrument that uses the piezoelectric effect to convert electrical energy
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into sound energy or the opposite [88,89]. For this reason, Taiki Makino et al. developed
an ultrasonic transducer using bovine femoral material for the measurement of ultrasonic
radiation and the reception of bone (Figure 7b) [82]. The cortical bone of the cattle femur
was made into a round plate with a diameter of 10 mm and a thickness of about 1 mm, and
XRD (X-ray diffraction) was used to measure the arrangement of hydroxyapatite crystals
in the sample to determine the position of the bone axis. Experiments have shown that
the ultrasonic radiation of a bone transmitter and the evoked potential of the receiver
are relatively small—one one-thousandth of the level of the PVDF transducer under the
same diameter. The use of transducers has confirmed the existence of small piezoelectric
effects and inverse piezoelectric effects in bone in the megahertz segment, and quantitative
analysis is useful in the clinical research on utilizing ultrasound in the megahertz segment
to treat bone repair [90].

Piezoelectric devices can use mechanical electrical impedance technology to reveal
changes in the elasticity of materials by detecting changes in resistance [91], which was
previously commonly used for the safe detection of the material structure of aircraft
wings or spacecraft [92] and can also be used for bone detection. Hector A. Tinoco et al.
designed and evaluated a piezoelectric sensing device for biological applications on bones
(Figure 7c) [83]. The experiment selected two materials—human teeth and an aluminum
cone embedded in the substrate—to mimic the shape of the alveolar bone, and three
different materials were used as the matrix. Measuring the velocity–frequency response
curve, the elastic changes in the matrix were obtained through impedance analysis during
the two frequency windows. At the same time, it was found that the coupling of different
types of materials has different sensitivities; therefore, this application can identify the
healing of bone injury through the electromechanical signal conversion of piezoelectric
devices, and it is necessary to measure its sensitivity in advance when applied to different
parts of bone tissue.

Directly bonded piezo sensors (DBPSs) refer to piezoelectric lead zirconate titanate
(PZT) bonded directly to the patient’s injured limb. Using mechanical electrical impedance
technology [93,94], the impedance change generated at the bone injury at the connection
point can be detected by the surface-bonded PZT patch [7,95,96], The high-frequency
excitations generated can quantify the extent of the injury or the extent of the healing.
However, direct bonding can adversely affect the patient’s limb [97]. To solve this problem,
Shashank Srivastava et al. proposed a new non-bonded piezo sensor (NBPS) configuration
which connects a PZT patch to the middle of an aluminum strip (Figure 7d) [84]. To
avoid the mechanical tightening of clamps through screws, which may cause discomfort
to patients and damage the PZT patch, shape memory alloy (SMA) wires were chosen for
clamping. NBPS with SMA clamping and traditional jubilee clamping were compared in
healthy and osteoporosis subjects, i.e., two different states of bone replicas, and the results
proved the effectiveness of the test. It also provided the quantification of parameters during
bone degeneration [98].

The problem of slow bone healing and nonunion in smokers and diabetic people has
always been a difficult problem to solve clinically [99–101]. Direct currents have been
found to effectively promote bone healing [102–104]. The use of piezoelectric materials
can effectively collect the energy generated by the human body in motion and convert it
into direct current [105]; however, it is challenging to overcome the generation of sufficient
power at low voltage and low frequency [106,107]. Piezoelectric stack materials have been
used to increase power at low voltages before, but they have not been used as biological
support materials. E.D. Krech et al. designed CLACS consisting of five piezo sheets
with a layer of low modulus epoxy in the middle of each of the two piezoelectric sheets
(Figure 7e) [85]. The volume is guaranteed to remain constant through the package; then,
the power at different frequencies, voltages, and resistors is measured. The higher the
thickness of the compliant layer, the heavier the mechanical load. Additionally, the higher
the frequency, the better the output power of the material. This study showed that the
device is suitable for the frequency and load of bone healing.
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4. Conclusions and Outlook

This review details piezoelectric materials and piezoelectric devices, as well as their
mechanisms of action in bone regeneration, and summarizes work in bone regeneration
(Table 1).

Table 1. Types, properties, and outcomes of piezoelectric material and devices.

Materials/Devices Properties Advantages Disadvantages Ref.

sm-PENG Promote osteogenic
differentiation Memory of shape Lack of validation of

animal experiments. [66]

ISPG

Host-coupled
bio-nanogenerator (HCBG)

configured with a
self-powered regional

electrical environment for
bone regeneration

Achieved
biomechanical

energy scavenging and
electrical stimulation therapy

In vivo degradation properties are
unclear, and if

surgical removal is required, it
will cause secondary damage to

the organism.

[67]

GaN/AlGaN Enhance bio
regeneration Rapid and superior bone repair in vivo

The specific
mechanism of action can be

studied in more depth.
[68]

PHBV

Simulate the
structure and

piezoelectric coefficient of
natural cartilage

Promote the
regeneration of

cartilage

The specific
mechanism of action can be

studied in more depth.
[70]

PLLA Remote-controlled
electrical stimulation Repair mouse skull defects

The output
performance of the device can

continue to be optimized.
[71]

Piezoelectric fixation plate Using piezoelectric materials
as both sensors and brakes

Realize the
mechanical vibration of non-connected
areas and evaluate the effectiveness of

the treatment

Inconvenient to carry. [81]

An ultrasonic transducer
using bovine femoral material

Measure the
ultrasonic radiation and

reception of bone

Measure the
piezoelectric

properties of the bone in the
megahertz segment

In vivo degradation properties are
unclear, and if

surgical removal is required, it
will cause secondary damage to

the organism.

[82]

A piezoelectric sensing device
for biological applications

on bones.

Uses mechanical electrical
impedance technology Detect the healing of the bone injury Lack of validation of

animal experiments. [83]

NBPS

Avoid the mechanical
tightening of clamps through

screws that may cause
discomfort to patients and

damage the PZT patch

Provides quantification of parameters
during bone degeneration

The explanation of the mechanism
needs to be improved. [84]

CLACS
Generate direct current under

the frequency and load of
bone healing

Solve slow bone healing and nonunion The explanation of the mechanism
needs to be improved. [85]

With an aging population and a proliferation of patients with refractory bone defects
due to trauma and tumors, the need for bone graft surgery and bone implants needs to be
urgently addressed. Although autologous bone grafting is the gold standard for treating
bone injuries, the limited amount of autologous bone available to fill large areas of bone
defects has led to the creation of bone engineering. Superior performance piezoelectric
materials have similar piezoelectric properties to natural bone tissue and can provide a
good electrochemical microenvironment for defective tissue without the use of external
power sources and electrodes. With the advancement of research, various piezoelectric
materials are becoming more suitable for bone defect repair through improvement and
modification, providing new directions for the translation of tissue engineering technology
into clinical practice. Using the body’s self-generated motions, such as arm swings, exten-
sions, or walking, as well as very small displacements within the body (e.g., breathing,
heartbeat, blood flow, blinking, or muscle stretch), piezoelectric nanogenerators can power
biomedical devices such as pacemakers and artificial retinas. Piezoelectric materials can
mimic the bioelectrical signals of bone tissue, promote the ability of osteoblasts to adhere,
proliferate, and differentiate, stimulate osteogenesis, and thus achieve bone repair; they
also represent promising bone implants that provide new ideas for bone repair in complex
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bone diseases. However, there are still some problems to be solved for actual clinical
applications, presented subsequently.

1. In addition to the excellent piezoelectric properties where the electrical signal
generated by the piezoelectric material can reach the threshold value for treating bone
tissue, the piezoelectric material needs to present good biocompatibility, degradability,
and accurate simulation of the extracellular matrix microenvironmental conditions of
bone tissue as an implant, which necessitates higher requirements for the development of
new biomaterials.

2. Despite the significant positive effects of piezoelectric materials and devices on
bone regeneration, the exact mechanism of action is still not well defined.

Miniaturization, good biocompatibility, easy degradation, and excellent output per-
formance are further goals to be pursued for such materials and devices. The further
optimization of piezoelectric composites for bone repair is another research goal because
composites formed by combining piezoelectric materials with other bone implant materials
can overcome the deficiencies of piezoelectric materials themselves while retaining the
piezoelectricity of the materials. The ultimate goal of piezoelectric materials and devices
for bone repair is to achieve clinical applications that improve health care and quality of
life for patients with bone injuries.
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